ERIC
Abstract:This research paper delves into the innovative integration of Shannon entropy and rough set theory, presenting a novel approach to generalize the evaluation approach in machine learning. The conventional application of entropy, primarily focused on information uncertainty, is extended through its combination with rough set theory to offer a deeper insight into data's intrinsic structure and the interpretability of machine learning models. We introduce a comprehensive framework that synergizes the granularity of rough set theory with the uncertainty quantification of Shannon entropy, applied across a spectrum of machine learning algorithms. Our methodology is rigorously tested on various datasets, showcasing its capability to not only assess predictive performance but also to illuminate the underlying data complexity and model robustness. The results underscore the utility of this integrated approach in enhancing the evaluation landscape of machine learning, offering a multi-faceted perspective that balances accuracy with a profound understanding of data attributes and model dynamics. This paper contributes a groundbreaking perspective to machine learning evaluation, proposing a method that encapsulates a holistic view of model performance, thereby facilitating more informed decision-making in model selection and application.
Abstract:The present-day business landscape necessitates novel methodologies that integrate intelligent technologies and tools capable of swiftly providing precise and dependable information for decision-making purposes. Contemporary society is characterized by vast amounts of accumulated data across various domains, which hold considerable potential for informing and guiding decision-making processes. However, these data are typically collected and stored by disparate and unrelated software systems, stored in diverse formats, and offer varying levels of accessibility and security. To address the challenges associated with processing such large volumes of data, organizations often rely on data analysts. Nonetheless, a significant hurdle in harnessing the benefits of accumulated data lies in the lack of direct communication between technical specialists, decision-makers, and business process analysts. To overcome this issue, the application of collaborative business intelligence (CBI) emerges as a viable solution. This research focuses on the applications of data mining and aims to model CBI processes within distributed virtual teams through the interaction of users and a CBI Virtual Assistant. The proposed virtual assistant for CBI endeavors to enhance data exploration accessibility for a wider range of users and streamline the time and effort required for data analysis. The key contributions of this study encompass: 1) a reference model representing collaborative BI, inspired by linguistic theory; 2) an approach that enables the transformation of user queries into executable commands, thereby facilitating their utilization within data exploration software; and 3) the primary workflow of a conversational agent designed for data analytics.
Abstract:Collaborative Business Analysis (CBA) is a methodology that involves bringing together different stakeholders, including business users, analysts, and technical specialists, to collaboratively analyze data and gain insights into business operations. The primary objective of CBA is to encourage knowledge sharing and collaboration between the different groups involved in business analysis, as this can lead to a more comprehensive understanding of the data and better decision-making. CBA typically involves a range of activities, including data gathering and analysis, brainstorming, problem-solving, decision-making and knowledge sharing. These activities may take place through various channels, such as in-person meetings, virtual collaboration tools or online forums. This paper deals with virtual collaboration tools as an important part of Business Intelligence (BI) platform. Collaborative Business Intelligence (CBI) tools are becoming more user-friendly, accessible, and flexible, allowing users to customize their experience and adapt to their specific needs. The goal of a virtual assistant is to make data exploration more accessible to a wider range of users and to reduce the time and effort required for data analysis. It describes the unified business intelligence semantic model, coupled with a data warehouse and collaborative unit to employ data mining technology. Moreover, we propose a virtual assistant for CBI and a reference model of virtual tools for CBI, which consists of three components: conversational, data exploration and recommendation agents. We believe that the allocation of these three functional tasks allows you to structure the CBI issue and apply relevant and productive models for human-like dialogue, text-to-command transferring, and recommendations simultaneously. The complex approach based on these three points gives the basis for virtual tool for collaboration. CBI encourages people, processes, and technology to enable everyone sharing and leveraging collective expertise, knowledge and data to gain valuable insights for making better decisions. This allows to respond more quickly and effectively to changes in the market or internal operations and improve the progress.