The present-day business landscape necessitates novel methodologies that integrate intelligent technologies and tools capable of swiftly providing precise and dependable information for decision-making purposes. Contemporary society is characterized by vast amounts of accumulated data across various domains, which hold considerable potential for informing and guiding decision-making processes. However, these data are typically collected and stored by disparate and unrelated software systems, stored in diverse formats, and offer varying levels of accessibility and security. To address the challenges associated with processing such large volumes of data, organizations often rely on data analysts. Nonetheless, a significant hurdle in harnessing the benefits of accumulated data lies in the lack of direct communication between technical specialists, decision-makers, and business process analysts. To overcome this issue, the application of collaborative business intelligence (CBI) emerges as a viable solution. This research focuses on the applications of data mining and aims to model CBI processes within distributed virtual teams through the interaction of users and a CBI Virtual Assistant. The proposed virtual assistant for CBI endeavors to enhance data exploration accessibility for a wider range of users and streamline the time and effort required for data analysis. The key contributions of this study encompass: 1) a reference model representing collaborative BI, inspired by linguistic theory; 2) an approach that enables the transformation of user queries into executable commands, thereby facilitating their utilization within data exploration software; and 3) the primary workflow of a conversational agent designed for data analytics.