Abstract:Background and Purpose: Convolutional neural network is widely used for image recognition in the medical area at nowadays. However, overall accuracy in predicting lung tumor is low and the processing time is high as the error occurred while reconstructing the CT image. The aim of this work is to increase the overall prediction accuracy along with reducing processing time by using multispace image in pooling layer of convolution neural network. Methodology: The proposed method has the autoencoder system to improve the overall accuracy, and to predict lung cancer by using multispace image in pooling layer of convolution neural network and Adam Algorithm for optimization. First, the CT images were pre-processed by feeding image to the convolution filter and down sampled by using max pooling. Then, features are extracted using the autoencoder model based on convolutional neural network and multispace image reconstruction technique is used to reduce error while reconstructing the image which then results improved accuracy to predict lung nodule. Finally, the reconstructed images are taken as input for SoftMax classifier to classify the CT images. Results: The state-of-art and proposed solutions were processed in Python Tensor Flow and It provides significant increase in accuracy in classification of lung cancer to 99.5 from 98.9 and decrease in processing time from 10 frames/second to 12 seconds/second. Conclusion: The proposed solution provides high classification accuracy along with less processing time compared to the state of art. For future research, large dataset can be implemented, and low pixel image can be processed to evaluate the classification
Abstract:Background and Aim: Accurate classification of Magnetic Resonance Images (MRI) is essential to accurately predict Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) conversion. Meanwhile, deep learning has been successfully implemented to classify and predict dementia disease. However, the accuracy of MRI image classification is low. This paper aims to increase the accuracy and reduce the processing time of classification through Deep Learning Architecture by using Elastic Net Regularization in Feature Selection. Methodology: The proposed system consists of Convolutional Neural Network (CNN) to enhance the accuracy of classification and prediction by using Elastic Net Regularization. Initially, the MRI images are fed into CNN for features extraction through convolutional layers alternate with pooling layers, and then through a fully connected layer. After that, the features extracted are subjected to Principle Component Analysis (PCA) and Elastic Net Regularization for feature selection. Finally, the selected features are used as an input to Extreme Machine Learning (EML) for the classification of MRI images. Results: The result shows that the accuracy of the proposed solution is better than the current system. In addition to that, the proposed method has improved the classification accuracy by 5% on average and reduced the processing time by 30 ~ 40 seconds on average. Conclusion: The proposed system is focused on improving the accuracy and processing time of MCI converters/non-converters classification. It consists of features extraction, feature selection, and classification using CNN, FreeSurfer, PCA, Elastic Net, Extreme Machine Learning. Finally, this study enhances the accuracy and the processing time by using Elastic Net Regularization, which provides important selected features for classification.
Abstract:Health records data security is one of the main challenges in e-health systems. Authentication is one of the essential security services to support the stored data confidentiality, integrity, and availability. This research focuses on the secure storage of patient and medical records in the healthcare sector where data security and unauthorized access is an ongoing issue. A potential solution comes from biometrics, although their use may be time-consuming and can slow down data retrieval. This research aims to overcome these challenges and enhance data access control in the healthcare sector through the addition of biometrics in the form of fingerprints. The proposed model for application in the healthcare sector consists of Collection, Network communication, and Authentication (CNA) using biometrics, which replaces an existing password-based access control method. A sensor then collects data and by using a network (wireless or Zig-bee), a connection is established, after connectivity analytics and data management work which processes and aggregate the data. Subsequently, access is granted to authenticated users of the application. This IoT-based biometric authentication system facilitates effective recognition and ensures confidentiality, integrity, and reliability of patients, records and other sensitive data. The proposed solution provides reliable access to healthcare data and enables secure access through the process of user and device authentication. The proposed model has been developed for access control to data through the authentication of users in healthcare to reduce data manipulation or theft.