Abstract:The goal of 2D human pose estimation (HPE) is to localize anatomical landmarks, given an image of a person in a pose. SOTA techniques make use of thousands of labeled figures (finetuning transformers or training deep CNNs), acquired using labor-intensive crowdsourcing. On the other hand, self-supervised methods re-frame the HPE task as a reconstruction problem, enabling them to leverage the vast amount of unlabeled visual data, though at the present cost of accuracy. In this work, we explore ways to improve self-supervised HPE. We (1) analyze the relationship between reconstruction quality and pose estimation accuracy, (2) develop a model pipeline that outperforms the baseline which inspired our work, using less than one-third the amount of training data, and (3) offer a new metric suitable for self-supervised settings that measures the consistency of predicted body part length proportions. We show that a combination of well-engineered reconstruction losses and inductive priors can help coordinate pose learning alongside reconstruction in a self-supervised paradigm.
Abstract:Visual Question Answering (VQA) has become one of the key benchmarks of visual recognition progress. Multiple VQA extensions have been explored to better simulate real-world settings: different question formulations, changing training and test distributions, conversational consistency in dialogues, and explanation-based answering. In this work, we further expand this space by considering visual questions that include a spatial point of reference. Pointing is a nearly universal gesture among humans, and real-world VQA is likely to involve a gesture towards the target region. Concretely, we (1) introduce and motivate point-input questions as an extension of VQA, (2) define three novel classes of questions within this space, and (3) for each class, introduce both a benchmark dataset and a series of baseline models to handle its unique challenges. There are two key distinctions from prior work. First, we explicitly design the benchmarks to require the point input, i.e., we ensure that the visual question cannot be answered accurately without the spatial reference. Second, we explicitly explore the more realistic point spatial input rather than the standard but unnatural bounding box input. Through our exploration we uncover and address several visual recognition challenges, including the ability to infer human intent, reason both locally and globally about the image, and effectively combine visual, language and spatial inputs. Code is available at: https://github.com/princetonvisualai/pointingqa .