Abstract:While some remarkable progress has been made in neural machine translation (NMT) research, there have not been many reports on its development and evaluation in practice. This paper tries to fill this gap by presenting some of our findings from building an in-house travel domain NMT system in a large scale E-commerce setting. The three major topics that we cover are optimization and training (including different optimization strategies and corpus sizes), handling real-world content and evaluating results.
Abstract:We describe our recently developed neural machine translation (NMT) system and benchmark it against our own statistical machine translation (SMT) system as well as two other general purpose online engines (statistical and neural). We present automatic and human evaluation results of the translation output provided by each system. We also analyze the effect of sentence length on the quality of output for SMT and NMT systems.