Abstract:The growing volumes of data being collected and its analysis to provide better services are creating worries about digital privacy. To address privacy concerns and give practical solutions, the literature has relied on secure multiparty computation. However, recent research has mostly focused on the small-party honest-majority setting of up to four parties, noting efficiency concerns. In this work, we extend the strategies to support a larger number of participants in an honest-majority setting with efficiency at the center stage. Cast in the preprocessing paradigm, our semi-honest protocol improves the online complexity of the decade-old state-of-the-art protocol of Damg\aa rd and Nielson (CRYPTO'07). In addition to having an improved online communication cost, we can shut down almost half of the parties in the online phase, thereby saving up to 50% in the system's operational costs. Our maliciously secure protocol also enjoys similar benefits and requires only half of the parties, except for one-time verification, towards the end. To showcase the practicality of the designed protocols, we benchmark popular applications such as deep neural networks, graph neural networks, genome sequence matching, and biometric matching using prototype implementations. Our improved protocols aid in bringing up to 60-80% savings in monetary cost over prior work.
Abstract:In this work, we design an efficient mixed-protocol framework, Tetrad, with applications to privacy-preserving machine learning. It is designed for the four-party setting with at most one active corruption and supports rings. Our fair multiplication protocol requires communicating only 5 ring elements improving over the state-of-the-art protocol of Trident (Chaudhari et al. NDSS'20). The technical highlights of Tetrad include efficient (a) truncation without any overhead, (b) multi-input multiplication protocols for arithmetic and boolean worlds, (c) garbled-world, tailor-made for the mixed-protocol framework, and (d) conversion mechanisms to switch between the computation styles. The fair framework is also extended to provide robustness without inflating the costs. The competence of Tetrad is tested with benchmarks for deep neural networks such as LeNet and VGG16 and support vector machines. One variant of our framework aims at minimizing the execution time, while the other focuses on the monetary cost. We observe improvements up to 6x over Trident across these parameters.
Abstract:Performing ML computation on private data while maintaining data privacy aka Privacy-preserving Machine Learning (PPML) is an emergent field of research. Recently, PPML has seen a visible shift towards the adoption of Secure Outsourced Computation (SOC) paradigm, due to the heavy computation that it entails. In the SOC paradigm, computation is outsourced to a set of powerful and specially equipped servers that provide service on a pay-per-use basis. In this work, we propose SWIFT, a robust PPML framework for a range of ML algorithms in SOC setting, that guarantees output delivery to the users irrespective of any adversarial behaviour. Robustness, a highly desirable feature, evokes user participation without the fear of denial of service. At the heart of our framework lies a highly-efficient, maliciously-secure, three-party computation (3PC) over rings that provides guaranteed output delivery (GOD) in the honest-majority setting. To the best of our knowledge, SWIFT is the first robust and efficient PPML framework in the 3PC setting. SWIFT is as fast as the best-known 3PC framework BLAZE (Patra et al. NDSS'20) which only achieves fairness. Fairness ensures either all or none receive the output, whereas GOD ensures guaranteed output delivery no matter what. We extend our 3PC framework for four parties (4PC). In this regime, SWIFT is as fast as the best known fair 4PC framework Trident (Chaudhari et al. NDSS'20) and twice faster than the best-known robust 4PC framework FLASH (Byali et al. PETS'20). We demonstrate the practical relevance of our framework by benchmarking two important applications-- i) ML algorithms: Logistic Regression and Neural Network, and ii) Biometric matching, both over a 64-bit ring in WAN setting. Our readings reflect our claims as above.