Abstract:Temporal difference (TD) learning is often used to update the estimate of the value function which is used by RL agents to extract useful policies. In this paper, we focus on value function estimation in continual reinforcement learning. We propose to decompose the value function into two components which update at different timescales: a permanent value function, which holds general knowledge that persists over time, and a transient value function, which allows quick adaptation to new situations. We establish theoretical results showing that our approach is well suited for continual learning and draw connections to the complementary learning systems (CLS) theory from neuroscience. Empirically, this approach improves performance significantly on both prediction and control problems.
Abstract:Temporal-Difference (TD) learning is a general and very useful tool for estimating the value function of a given policy, which in turn is required to find good policies. Generally speaking, TD learning updates states whenever they are visited. When the agent lands in a state, its value can be used to compute the TD-error, which is then propagated to other states. However, it may be interesting, when computing updates, to take into account other information than whether a state is visited or not. For example, some states might be more important than others (such as states which are frequently seen in a successful trajectory). Or, some states might have unreliable value estimates (for example, due to partial observability or lack of data), making their values less desirable as targets. We propose an approach to re-weighting states used in TD updates, both when they are the input and when they provide the target for the update. We prove that our approach converges with linear function approximation and illustrate its desirable empirical behaviour compared to other TD-style methods.
Abstract:Despite recent successes in Reinforcement Learning, value-based methods often suffer from high variance hindering performance. In this paper, we illustrate this in a continuous control setting where state of the art methods perform poorly whenever sensor noise is introduced. To overcome this issue, we introduce Recurrent Value Functions (RVFs) as an alternative to estimate the value function of a state. We propose to estimate the value function of the current state using the value function of past states visited along the trajectory. Due to the nature of their formulation, RVFs have a natural way of learning an emphasis function that selectively emphasizes important states. First, we establish RVF's asymptotic convergence properties in tabular settings. We then demonstrate their robustness on a partially observable domain and continuous control tasks. Finally, we provide a qualitative interpretation of the learned emphasis function.