Abstract:Deep Neural Nets (DNNs) learn latent representations induced by their downstream task, objective function, and other parameters. The quality of the learned representations impacts the DNN's generalization ability and the coherence of the emerging latent space. The Information Bottleneck (IB) provides a hypothetically optimal framework for data modeling, yet it is often intractable. Recent efforts combined DNNs with the IB by applying VAE-inspired variational methods to approximate bounds on mutual information, resulting in improved robustness to adversarial attacks. This work introduces a new and tighter variational bound for the IB, improving performance of previous IB-inspired DNNs. These advancements strengthen the case for the IB and its variational approximations as a data modeling framework, and provide a simple method to significantly enhance the adversarial robustness of classifier DNNs.
Abstract:Hebrew is a Morphological rich language, making its modeling harder than simpler language. Recent developments such as Transformers in general and Bert in particular opened a path for Hebrew models that reach SOTA results, not falling short from other non-MRL languages. We explore the cutting edge in this field performing style transfer, text generation and classification over news articles collected from online archives. Furthermore, the news portals that feed our collective consciousness are an interesting corpus to study, as their analysis and tracing might reveal insights about our society and discourse.