Abstract:As data volumes expand rapidly, distributed machine learning has become essential for addressing the growing computational demands of modern AI systems. However, training models in distributed environments is challenging with participants hold skew, Non-Independent-Identically distributed (Non-IID) data. Low-Rank Adaptation (LoRA) offers a promising solution to this problem by personalizing low-rank updates rather than optimizing the entire model, LoRA-enabled distributed learning minimizes computational and maximize personalization for each participant. Enabling more robust and efficient training in distributed learning settings, especially in large-scale, heterogeneous systems. Despite the strengths of current state-of-the-art methods, they often require manual configuration of the initial rank, which is increasingly impractical as the number of participants grows. This manual tuning is not only time-consuming but also prone to suboptimal configurations. To address this limitation, we propose AutoRank, an adaptive rank-setting algorithm inspired by the bias-variance trade-off. AutoRank leverages the MCDA method TOPSIS to dynamically assign local ranks based on the complexity of each participant's data. By evaluating data distribution and complexity through our proposed data complexity metrics, AutoRank provides fine-grained adjustments to the rank of each participant's local LoRA model. This adaptive approach effectively mitigates the challenges of double-imbalanced, non-IID data. Experimental results demonstrate that AutoRank significantly reduces computational overhead, enhances model performance, and accelerates convergence in highly heterogeneous federated learning environments. Through its strong adaptability, AutoRank offers a scalable and flexible solution for distributed machine learning.
Abstract:Federated Learning (FL) is a promising privacy-aware distributed learning framework that can be deployed on various devices, such as mobile phones, desktops, and devices equipped with CPUs or GPUs. In the context of server-based Federated Learning as a Service (FLaas), FL enables the central server to coordinate the training process across multiple devices without direct access to the local data, thereby enhancing privacy and data security. Low-Rank Adaptation (LoRA) is a method that fine-tunes models efficiently by focusing on a low-dimensional subspace of the model's parameters. This approach significantly reduces computational and memory costs compared to fine-tuning all parameters from scratch. When integrated with FL, especially in a FLaas environment, LoRA allows for flexible and efficient deployment across diverse hardware with varying computational capabilities by adjusting the local model's rank. However, in LoRA-enabled FL, different clients may train models with varying ranks, which poses a challenge for model aggregation on the server. Current methods of aggregating models of different ranks require padding weights to a uniform shape, which can degrade the global model's performance. To address this issue, we propose Rank-Based LoRA Aggregation (RBLA), a novel model aggregation method designed for heterogeneous LoRA structures. RBLA preserves key features across models with different ranks. This paper analyzes the issues with current padding methods that reshape models for aggregation in a FLaas environment. Then, we introduce RBLA, a rank-based aggregation method that maintains both low-rank and high-rank features. Finally, we demonstrate the effectiveness of RBLA through comparative experiments with state-of-the-art methods.