Abstract:Deep generative models are now able to synthesize high-quality audio signals, shifting the critical aspect in their development from audio quality to control capabilities. Although text-to-music generation is getting largely adopted by the general public, explicit control and example-based style transfer are more adequate modalities to capture the intents of artists and musicians. In this paper, we aim to unify explicit control and style transfer within a single model by separating local and global information to capture musical structure and timbre respectively. To do so, we leverage the capabilities of diffusion autoencoders to extract semantic features, in order to build two representation spaces. We enforce disentanglement between those spaces using an adversarial criterion and a two-stage training strategy. Our resulting model can generate audio matching a timbre target, while specifying structure either with explicit controls or through another audio example. We evaluate our model on one-shot timbre transfer and MIDI-to-audio tasks on instrumental recordings and show that we outperform existing baselines in terms of audio quality and target fidelity. Furthermore, we show that our method can generate cover versions of complete musical pieces by transferring rhythmic and melodic content to the style of a target audio in a different genre.
Abstract:Despite significant advances in deep models for music generation, the use of these techniques remains restricted to expert users. Before being democratized among musicians, generative models must first provide expressive control over the generation, as this conditions the integration of deep generative models in creative workflows. In this paper, we tackle this issue by introducing a deep generative audio model providing expressive and continuous descriptor-based control, while remaining lightweight enough to be embedded in a hardware synthesizer. We enforce the controllability of real-time generation by explicitly removing salient musical features in the latent space using an adversarial confusion criterion. User-specified features are then reintroduced as additional conditioning information, allowing for continuous control of the generation, akin to a synthesizer knob. We assess the performance of our method on a wide variety of sounds including instrumental, percussive and speech recordings while providing both timbre and attributes transfer, allowing new ways of generating sounds.