Abstract:Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data. This knowledge is important in many safety-critical domains, where it often needs to be extracted from observational data. In this work, we propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes. The motivation of our approach is to exploit the superiority of tree-based models for handling tabular data together with the notable property of causal inference neural network-based models to learn representations that are useful for estimating the outcome for both the treatment and non-treatment cases. The proposed model also inherits the considerable advantages of XGBoost model such as efficiently handling features with missing values requiring minimum preprocessing effort, as well as it is equipped with regularization techniques to avoid overfitting/bias. Furthermore, we propose a new loss function for efficiently training the proposed causal inference model. The experimental analysis, which is based on the performance profiles of Dolan and Mor{\'e} as well as on post-hoc and non-parametric statistical tests, provide strong evidence about the effectiveness of the proposed approach.
Abstract:With the proliferation of image-based applications in various domains, the need for accurate and interpretable image similarity measures has become increasingly critical. Existing image similarity models often lack transparency, making it challenging to understand the reasons why two images are considered similar. In this paper, we propose the concept of explainable image similarity, where the goal is the development of an approach, which is capable of providing similarity scores along with visual factual and counterfactual explanations. Along this line, we present a new framework, which integrates Siamese Networks and Grad-CAM for providing explainable image similarity and discuss the potential benefits and challenges of adopting this approach. In addition, we provide a comprehensive discussion about factual and counterfactual explanations provided by the proposed framework for assisting decision making. The proposed approach has the potential to enhance the interpretability, trustworthiness and user acceptance of image-based systems in real-world image similarity applications. The implementation code can be found in https://github.com/ioannislivieris/Grad_CAM_Siamese.git.
Abstract:Treatment effect estimation is of high-importance for both researchers and practitioners across many scientific and industrial domains. The abundance of observational data makes them increasingly used by researchers for the estimation of causal effects. However, these data suffer from biases, from several weaknesses, leading to inaccurate causal effect estimations, if not handled properly. Therefore, several machine learning techniques have been proposed, most of them focusing on leveraging the predictive power of neural network models to attain more precise estimation of causal effects. In this work, we propose a new methodology, named Nearest Neighboring Information for Causal Inference (NNCI), for integrating valuable nearest neighboring information on neural network-based models for estimating treatment effects. The proposed NNCI methodology is applied to some of the most well established neural network-based models for treatment effect estimation with the use of observational data. Numerical experiments and analysis provide empirical and statistical evidence that the integration of NNCI with state-of-the-art neural network models leads to considerably improved treatment effect estimations on a variety of well-known challenging benchmarks.
Abstract:Nowadays, in many scientific and industrial fields there is an increasing need for estimating treatment effects and answering causal questions. The key for addressing these problems is the wealth of observational data and the processes for leveraging this data. In this work, we propose a new model for predicting the potential outcomes and the propensity score, which is based on a neural network architecture. The proposed model exploits the covariates as well as the outcomes of neighboring instances in training data. Numerical experiments illustrate that the proposed model reports better treatment effect estimation performance compared to state-of-the-art models.