Abstract:Chord diagrams are used by guitar players to show where and how to play a chord on the fretboard. They are useful to beginners learning chords or for sharing the hand positions required to play a song.However, the diagrams presented on guitar learning toolsare usually selected from an existing databaseand rarely represent the actual positions used by performers.In this paper, we propose a tool which suggests a chord diagram for achord label,taking into account the diagram of the previous chord.Based on statistical analysis of the DadaGP and mySongBook datasets, we show that some chord diagrams are over-represented in western popular musicand that some chords can be played in more than 20 different ways.We argue that taking context into account can improve the variety and the quality of chord diagram suggestion, and compare this approach with a model taking only the current chord label into account.We show that adding previous context improves the F1-score on this task by up to 27% and reduces the propensity of the model to suggest standard open chords.We also define the notion of texture in the context of chord diagrams andshow through a variety of metrics that our model improves textureconsistencywith the previous diagram.
Abstract:According to parallel distributed processing (PDP) theory in psychology, neural networks (NN) learn distributed rather than interpretable localist representations. This view has been held so strongly that few researchers have analysed single units to determine if this assumption is correct. However, recent results from psychology, neuroscience and computer science have shown the occasional existence of local codes emerging in artificial and biological neural networks. In this paper, we undertake the first systematic survey of when local codes emerge in a feed-forward neural network, using generated input and output data with known qualities. We find that the number of local codes that emerge from a NN follows a well-defined distribution across the number of hidden layer neurons, with a peak determined by the size of input data, number of examples presented and the sparsity of input data. Using a 1-hot output code drastically decreases the number of local codes on the hidden layer. The number of emergent local codes increases with the percentage of dropout applied to the hidden layer, suggesting that the localist encoding may offer a resilience to noisy networks. This data suggests that localist coding can emerge from feed-forward PDP networks and suggests some of the conditions that may lead to interpretable localist representations in the cortex. The findings highlight how local codes should not be dismissed out of hand.