Abstract:Procedural Level Generation via Machine Learning (PLGML), the study of generating game levels with machine learning, has received a large amount of recent academic attention. For certain measures these approaches have shown success at replicating the quality of existing game levels. However, it is unclear the extent to which they might benefit human designers. In this paper we present a framework for co-creative level design with a PLGML agent. In support of this framework we present results from a user study and results from a comparative study of PLGML approaches.
Abstract:The ability to extract the sequence of game events for a given player's play-through has traditionally required access to the game's engine or source code. This serves as a barrier to researchers, developers, and hobbyists who might otherwise benefit from these game logs. In this paper we present two approaches to derive game logs from game video via convolutional neural networks and transfer learning. We evaluate the approaches in a Super Mario Bros. clone, Mega Man and Skyrim. Our results demonstrate our approach outperforms random forest and other transfer baselines.
Abstract:In this paper we present the Creative Invention Benchmark (CrIB), a 2000-problem benchmark for evaluating a particular facet of computational creativity. Specifically, we address combinational p-creativity, the creativity at play when someone combines existing knowledge to achieve a solution novel to that individual. We present generation strategies for the five problem categories of the benchmark and a set of initial baselines.