Abstract:Movable antenna (MA) has emerged as a promising technology for improving the performance of wireless communication systems, which enables local movement of the antennas to create more favorable channel conditions. In this letter, we advance its application for over-the-air computation (AirComp) network, where an access point is equipped with a two-dimensional (2D) MA array to aggregate wireless data from massive users. We aim to minimize the computation mean square error (CMSE) by jointly optimizing the antenna position vector (APV), the receive combining vector at the access point and the transmit coefficients from all users. To tackle this highly non-convex problem, we propose a two-loop iterative algorithm, where the particle swarm optimization (PSO) approach is leveraged to obtain a suboptimal APV in the outer loop while the receive combining vector and transmit coefficients are alternately optimized in the inner loop. Numerical results demonstrate that the proposed MA-enhanced AirComp network outperforms the conventional network with fixed-position antennas (FPAs).
Abstract:The movable antenna (MA) technology has attracted increasing attention in wireless communications due to its capability for flexibly adjusting the positions of multiple antennas in a local region to reconfigure channel conditions. In this paper, we investigate its application in an amplify-and-forward (AF) relay system, where a multi-MA AF relay is deployed to assist in the wireless communications from a source to a destination. In particular, we aim to maximize the achievable rate at the destination, by jointly optimizing the AF weight matrix at the relay and its MAs' positions in two stages for receiving the signal from the source and transmitting its amplified version to the destination, respectively. However, compared to the existing one-stage antenna position optimization, the two-stage position optimization is more challenging due to its intricate coupling in the achievable rate at the destination. To tackle this challenge, we decompose the considered problem into several subproblems by invoking the alternating optimization (AO) and solve them by using the semidefinite programming and the gradient ascent. Numerical results demonstrate the superiority of our proposed system over the conventional relaying system with fixed-position antennas (FPAs) and also drive essential insights.