Abstract:Deep neural networks (DNNs) are widely studied in various applications. A DNN consists of layers of neurons that compute affine combinations, apply nonlinear operations, and produce corresponding activations. The rectified linear unit (ReLU) is a typical nonlinear operator, outputting the max of its input and zero. In scenarios like max pooling, where multiple input values are involved, a fixed-parameter DNN can be modeled as a mixed-integer program (MIP). This formulation, with continuous variables representing unit outputs and binary variables for ReLU activation, finds applications across diverse domains. This study explores the formulation of trained ReLU neurons as MIP and applies MIP models for training neural networks (NNs). Specifically, it investigates interactions between MIP techniques and various NN architectures, including binary DNNs (employing step activation functions) and binarized DNNs (with weights and activations limited to $-1,0,+1$). The research focuses on training and evaluating proposed approaches through experiments on handwritten digit classification models. The comparative study assesses the performance of trained ReLU NNs, shedding light on the effectiveness of MIP formulations in enhancing training processes for NNs.
Abstract:Cybersecurity of Industrial Cyber-Physical Systems is drawing significant concerns as data communication increasingly leverages wireless networks. A lot of data-driven methods were develope for detecting cyberattacks, but few are focused on distinguishing them from equipment faults. In this paper, we develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on networked industrial control systems. The framework has a hybrid design that combines a variational autoencoder (VAE), a recurrent neural network (RNN), and a Deep Neural Network (DNN). This data-driven framework considers the temporal behavior of a generic physical system that extracts features from the time series of the sensor measurements that can be used for detecting covert attacks, distinguishing them from equipment faults, as well as localize the attack/fault. We evaluate the performance of the proposed method through a realistic simulation study on a networked power transmission system as a typical example of ICS. We compare the performance of the proposed method with the traditional model-based method to show its applicability and efficacy.