Abstract:Most existing offline RL methods presume the availability of action labels within the dataset, but in many practical scenarios, actions may be missing due to privacy, storage, or sensor limitations. We formalise the setting of action-free offline-to-online RL, where agents must learn from datasets consisting solely of $(s,r,s')$ tuples and later leverage this knowledge during online interaction. To address this challenge, we propose learning state policies that recommend desirable next-state transitions rather than actions. Our contributions are twofold. First, we introduce a simple yet novel state discretisation transformation and propose Offline State-Only DecQN (\algo), a value-based algorithm designed to pre-train state policies from action-free data. \algo{} integrates the transformation to scale efficiently to high-dimensional problems while avoiding instability and overfitting associated with continuous state prediction. Second, we propose a novel mechanism for guided online learning that leverages these pre-trained state policies to accelerate the learning of online agents. Together, these components establish a scalable and practical framework for leveraging action-free datasets to accelerate online RL. Empirical results across diverse benchmarks demonstrate that our approach improves convergence speed and asymptotic performance, while analyses reveal that discretisation and regularisation are critical to its effectiveness.
Abstract:Offline reinforcement learning (RL) looks at learning how to optimally solve tasks using a fixed dataset of interactions from the environment. Many off-policy algorithms developed for online learning struggle in the offline setting as they tend to over-estimate the behaviour of out of distributions actions. Existing offline RL algorithms adapt off-policy algorithms, employing techniques such as constraining the policy or modifying the value function to achieve good performance on individual datasets but struggle to adapt to different tasks or datasets of different qualities without tuning hyper-parameters. We introduce a policy switching technique that dynamically combines the behaviour of a pure off-policy RL agent, for improving behaviour, and a behavioural cloning (BC) agent, for staying close to the data. We achieve this by using a combination of epistemic uncertainty, quantified by our RL model, and a metric for aleatoric uncertainty extracted from the dataset. We show empirically that our policy switching technique can outperform not only the individual algorithms used in the switching process but also compete with state-of-the-art methods on numerous benchmarks. Our use of epistemic uncertainty for policy switching also allows us to naturally extend our method to the domain of offline to online fine-tuning allowing our model to adapt quickly and safely from online data, either matching or exceeding the performance of current methods that typically require additional modification or hyper-parameter fine-tuning.