Abstract:To autonomously collect soil in uncultivated terrain, robotic arms must distinguish between different amorphous materials and submerge themselves into the correct material. We develop a prototype that collects soil in heterogeneous terrain. If mounted to a mobile robot, it can be used to perform soil collection and analysis without human intervention. Unique among soil sampling robots, we use a general-purpose robotic arm rather than a soil core sampler.
Abstract:Despite recent advances in both model architectures and data augmentation, multimodal object detectors still barely outperform their LiDAR-only counterparts. This shortcoming has been attributed to a lack of sufficiently powerful multimodal data augmentation. To address this, we present SurfaceAug, a novel ground truth sampling algorithm. SurfaceAug pastes objects by resampling both images and point clouds, enabling object-level transformations in both modalities. We evaluate our algorithm by training a multimodal detector on KITTI and compare its performance to previous works. We show experimentally that SurfaceAug outperforms existing methods on car detection tasks and establishes a new state of the art for multimodal ground truth sampling.