Abstract:Existing evaluations of entity linking systems often say little about how the system is going to perform for a particular application. There are four fundamental reasons for this: many benchmarks focus on named entities; it is hard to define which other entities to include; there are ambiguities in entity recognition and entity linking; many benchmarks have errors or artifacts that invite overfitting or lead to evaluation results of limited meaningfulness. We provide a more meaningful and fair in-depth evaluation of a variety of existing end-to-end entity linkers. We characterize the strengths and weaknesses of these linkers and how well the results from the respective publications can be reproduced. Our evaluation is based on several widely used benchmarks, which exhibit the problems mentioned above to various degrees, as well as on two new benchmarks, which address these problems.
Abstract:We present Elevant, a tool for the fully automatic fine-grained evaluation of a set of entity linkers on a set of benchmarks. Elevant provides an automatic breakdown of the performance by various error categories and by entity type. Elevant also provides a rich and compact, yet very intuitive and self-explanatory visualization of the results of a linker on a benchmark in comparison to the ground truth. A live demo, the link to the complete code base on GitHub and a link to a demo video are provided under https://elevant.cs.uni-freiburg.de .