Abstract:Pedestrian safety is a priority for transportation system managers and operators, and a main focus of the Vision Zero strategy employed by the City of Austin, Texas. While there are a number of treatments and technologies to effectively improve pedestrian safety, identifying the location where these treatments are most needed remains a challenge. Current practice requires manual observation of candidate locations for limited time periods, leading to an identification process that is time consuming, lags behind traffic pattern changes over time, and lacks scalability. Mid-block locations, where safety countermeasures are often needed the most, are especially hard to identify and monitor. The goal for this research is to understand the correlation between bus stop locations and mid-block crossings, so as to assist traffic engineers in implementing Vision Zero strategies to improve pedestrian safety. In a prior work, we have developed a tool to detect pedestrian crossing events with traffic camera video using a deep neural network model to identify crossing events. In this paper, we extend the methods to identify bus stop usage with traffic camera video from off-the-shelf CCTV pan-tilt-zoom (PTZ) traffic monitoring cameras installed at nearby intersections. We correlate the video detection results for mid-block crossings near a bus stop, with pedestrian activity at the bus stops in each side of the mid-block crossing. We also implement a web portal to facilitate manual review of pedestrian activity detections by automating creation of video clips that show only crossing events, thereby vastly improving the efficiency of the human review process.