Abstract:This paper presents a novel approach of leveraging Inter-Annotator Agreement (IAA), traditionally used for assessing labeling consistency, to optimize Data Management Operations (DMOps). We advocate for the use of IAA in predicting the labeling quality of individual annotators, leading to cost and time efficiency in data production. Additionally, our work highlights the potential of IAA in forecasting document difficulty, thereby boosting the data construction process's overall efficiency. This research underscores IAA's broader application potential in data-driven research optimization and holds significant implications for large-scale data projects prioritizing efficiency, cost reduction, and high-quality data.
Abstract:Inter-Annotator Agreement (IAA) is commonly used as a measure of label consistency in natural language processing tasks. However, in real-world scenarios, IAA has various roles and implications beyond its traditional usage. In this paper, we not only consider IAA as a measure of consistency but also as a versatile tool that can be effectively utilized in practical applications. Moreover, we discuss various considerations and potential concerns when applying IAA and suggest strategies for effectively navigating these challenges.