Abstract:Sharpness-Aware Minimization (SAM) is an optimization technique designed to improve generalization by favoring flatter loss minima. To achieve this, SAM optimizes a modified objective that penalizes sharpness, using computationally efficient approximations. Interestingly, we find that more precise approximations of the proposed SAM objective degrade generalization performance, suggesting that the generalization benefits of SAM are rooted in these approximations rather than in the original intended mechanism. This highlights a gap in our understanding of SAM's effectiveness and calls for further investigation into the role of approximations in optimization.
Abstract:Recent advancements in Large Language Model (LLM)-based frameworks have extended their capabilities to complex real-world applications, such as interactive web navigation. These systems, driven by user commands, navigate web browsers to complete tasks through multi-turn dialogues, offering both innovative opportunities and significant challenges. Despite the introduction of benchmarks for conversational web navigation, a detailed understanding of the key contextual components that influence the performance of these agents remains elusive. This study aims to fill this gap by analyzing the various contextual elements crucial to the functioning of web navigation agents. We investigate the optimization of context management, focusing on the influence of interaction history and web page representation. Our work highlights improved agent performance across out-of-distribution scenarios, including unseen websites, categories, and geographic locations through effective context management. These findings provide insights into the design and optimization of LLM-based agents, enabling more accurate and effective web navigation in real-world applications.