Abstract:We present an electronically-reconfigurable antenna array offering low probability of intercept/detect (LPI/LPD) and secure communications capabilities simultaneously at the physical layer. This antenna array is designed to provide rapidly time-varying sidelobes and a stationary main lobe. By performing rapid sidelobe time modulation (SLTM), the signal transmitted in the undesired directions (i.e., through sidelobes) undergoes spread-spectrum distortion making it more difficult to be detected, intercepted, and deciphered while the signal transmitted in the desired direction (i.e., through the main lobe) is unaffected. Therefore, the intended receiver would not need additional modifications (i.e. encryption keys) to detect and recover the signal. We describe the operating principles of this SLTM array and validate its spread-spectrum SLTM sequence generation in undesired directions through theory, simulations, and experiments. Using a fabricated SLTM prototype operating at X band, we conducted system-level measurements to demonstrate its LPI/LPD, secure communications, and jamming resilience capabilities. The presented method is a physical layer technique, which can bring LPI/LPD capabilities to existing communications systems by simply replacing their antennas with SLTM arrays. This technique can be used independently or in combination with additional coding and signal-processing techniques to achieve further enhancements in LPI/LPD and secure communications.
Abstract:Antennas operating at the high-frequency (HF) band (3-30 MHz) are frequently electrically small due to the large wavelength of electromagnetic waves (10-100 m). However, the bandwidth-efficiency products of passively matched electrically small antennas (ESAs) are fundamentally limited. Wideband HF waveforms using bandwidths of 24 kHz or more have recently received significant attention in military communications applications. Efficiently radiating such signals from conventional passive ESAs is very challenging due to fundamental physical limits on bandwidth-efficiency products of ESAs. However, active antennas are not subject to the same constraints. In this work, we present the design and experimental characterization of a high-power, active ESA with enhanced bandwidth-efficiency product compared to {that of} passively matched ESAs. Specifically, the proposed active ESA can radiate wideband HF signals with banwidths of 24 kHz or more, with total efficiencies up to 80$\%$, and radiated power levels approaching 100 W. Our approach uses a highly-efficient, integrated class-E switching circuit specifically designed to drive an electrically small, high-Q HF antenna over a bandwidth exceeding 24 kHz. Using a high-Q RLC antenna model, we have successfully demonstrated wideband binary ASK, PSK, and FSK modulations with the proposed class-E switching architecture. Experimental results indicate that the bandwidth-efficiency product of this class-E active antenna is 5.4-9.8 dB higher than that of an equivalent passive design with the same data rate, and bit-error-rate (BER).