Abstract:Public transport routing plays a crucial role in transit network design, ensuring a satisfactory level of service for passengers. However, current routing solutions rely on traditional operational research heuristics, which can be time-consuming to implement and lack the ability to provide quick solutions. Here, we propose a novel deep learning-based methodology for a decision support system that enables public transport (PT) planners to identify short-term route improvements rapidly. By seamlessly adjusting specific sections of routes between two stops during specific times of the day, our method effectively reduces times and enhances PT services. Leveraging diverse data sources such as GTFS and smart card data, we extract features and model the transportation network as a directed graph. Using self-supervision, we train a deep learning model for predicting lateness values for road segments. These lateness values are then utilized as edge weights in the transportation graph, enabling efficient path searching. Through evaluating the method on Tel Aviv, we are able to reduce times on more than 9\% of the routes. The improved routes included both intraurban and suburban routes showcasing a fact highlighting the model's versatility. The findings emphasize the potential of our data-driven decision support system to enhance public transport and city logistics, promoting greater efficiency and reliability in PT services.
Abstract:With the increase in population densities and environmental awareness, public transport has become an important aspect of urban life. Consequently, large quantities of transportation data are generated, and mining data from smart card use has become a standardized method to understand the travel habits of passengers. Public transport datasets, however, often may lack data integrity; boarding stop information may be missing due to either imperfect acquirement processes or inadequate reporting. As a result, large quantities of observations and even complete sections of cities might be absent from the smart card database. We have developed a machine (supervised) learning method to impute missing boarding stops based on ordinal classification. In addition, we present a new metric, Pareto Accuracy, to evaluate algorithms where classes have an ordinal nature. Results are based on a case study in the Israeli city of Beer Sheva for one month of data. We show that our proposed method significantly notably outperforms current imputation methods and can improve the accuracy and usefulness of large-scale transportation data.