Abstract:We propose Style Conditioned Recommendations (SCR) and introduce style injection as a method to diversify recommendations. We use Conditional Variational Autoencoder (CVAE) architecture, where both the encoder and decoder are conditioned on a user profile learned from item content data. This allows us to apply style transfer methodologies to the task of recommendations, which we refer to as injection. To enable style injection, user profiles are learned to be interpretable such that they express users' propensities for specific predefined styles. These are learned via label-propagation from a dataset of item content, with limited labeled points. To perform injection, the condition on the encoder is learned while the condition on the decoder is selected per explicit feedback. Explicit feedback can be taken either from a user's response to a style or interest quiz, or from item ratings. In the absence of explicit feedback, the condition at the encoder is applied to the decoder. We show a 12% improvement on NDCG@20 over the traditional VAE based approach and an average 22% improvement on AUC across all classes for predicting user style profiles against our best performing baseline. After injecting styles we compare the user style profile to the style of the recommendations and show that injected styles have an average +133% increase in presence. Our results show that style injection is a powerful method to diversify recommendations while maintaining personal relevance. Our main contribution is an application of a semi-supervised approach that extends item labels to interpretable user profiles.
Abstract:The problem of ranking is a multi-billion dollar problem. In this paper we present an overview of several production quality ranking systems. We show that due to conflicting goals of employing the most effective machine learning models and responding to users in real time, ranking systems have evolved into a system of systems, where each subsystem can be viewed as a component layer. We view these layers as being data processing, representation learning, candidate selection and online inference. Each layer employs different algorithms and tools, with every end-to-end ranking system spanning multiple architectures. Our goal is to familiarize the general audience with a working knowledge of ranking at scale, the tools and algorithms employed and the challenges introduced by adopting a layered approach.
Abstract:E-commerce platforms surface interesting products largely through product recommendations that capture users' styles and aesthetic preferences. Curating recommendations as a complete complementary set, or assortment, is critical for a successful e-commerce experience, especially for product categories such as furniture, where items are selected together with the overall theme, style or ambiance of a space in mind. In this paper, we propose two visually-aware recommender systems that can automatically curate an assortment of living room furniture around a couple of pre-selected seed pieces for the room. The first system aims to maximize the visual-based style compatibility of the entire selection by making use of transfer learning and topic modeling. The second system extends the first by incorporating text data and applying polylingual topic modeling to infer style over both modalities. We review the production pipeline for surfacing these visually-aware recommender systems and compare them through offline validations and large-scale online A/B tests on Overstock. Our experimental results show that complimentary style is best discovered over product sets when both visual and textual data are incorporated.
Abstract:In this paper, we explore Latent Dirichlet Allocation (LDA) and Polylingual Latent Dirichlet Allocation (PolyLDA), as a means to discover trending styles in Overstock from deep visual semantic features transferred from a pretrained convolutional neural network and text-based item attributes. To utilize deep visual semantic features in conjunction with LDA, we develop a method for creating a bag of words representation of unrolled image vectors. By viewing the channels within the convolutional layers of a Resnet-50 as being representative of a word, we can index these activations to create visual documents. We then train LDA over these documents to discover the latent style in the images. We also incorporate text-based data with PolyLDA, where each representation is viewed as an independent language attempting to describe the same style. The resulting topics are shown to be excellent indicators of visual style across our platform.