Abstract:The escalating complexity of modern computing frameworks has resulted in a surge in the cybersecurity vulnerabilities reported to the National Vulnerability Database (NVD) by practitioners. Despite the fact that the stature of NVD is one of the most significant databases for the latest insights into vulnerabilities, extracting meaningful trends from such a large amount of unstructured data is still challenging without the application of suitable technological methodologies. Previous efforts have mostly concentrated on software vulnerabilities; however, a holistic strategy incorporates approaches for mitigating vulnerabilities, score prediction, and a knowledge-generating system that may extract relevant insights from the Common Weakness Enumeration (CWE) and Common Vulnerability Exchange (CVE) databases is notably absent. As the number of hardware attacks on Internet of Things (IoT) devices continues to rapidly increase, we present the Hardware Vulnerability to Weakness Mapping (HW-V2W-Map) Framework, which is a Machine Learning (ML) framework focusing on hardware vulnerabilities and IoT security. The architecture that we have proposed incorporates an Ontology-driven Storytelling framework, which automates the process of updating the ontology in order to recognize patterns and evolution of vulnerabilities over time and provides approaches for mitigating the vulnerabilities. The repercussions of vulnerabilities can be mitigated as a result of this, and conversely, future exposures can be predicted and prevented. Furthermore, our proposed framework utilized Generative Pre-trained Transformer (GPT) Large Language Models (LLMs) to provide mitigation suggestions.
Abstract:Mobile phones and other electronic gadgets or devices have aided in collecting data without the need for data entry. This paper will specifically focus on Mobile health data. Mobile health data use mobile devices to gather clinical health data and track patient vitals in real-time. Our study is aimed to give decisions for small or big sports teams on whether one athlete good fit or not for a particular game with the compare several machine learning algorithms to predict human behavior and health using the data collected from mobile devices and sensors placed on patients. In this study, we have obtained the dataset from a similar study done on mhealth. The dataset contains vital signs recordings of ten volunteers from different backgrounds. They had to perform several physical activities with a sensor placed on their bodies. Our study used 5 machine learning algorithms (XGBoost, Naive Bayes, Decision Tree, Random Forest, and Logistic Regression) to analyze and predict human health behavior. XGBoost performed better compared to the other machine learning algorithms and achieved 95.2% accuracy, 99.5% in sensitivity, 99.5% in specificity, and 99.66% in F1 score. Our research indicated a promising future in mhealth being used to predict human behavior and further research and exploration need to be done for it to be available for commercial use specifically in the sports industry.
Abstract:Breast cancer is one of the most common and dangerous cancers in women, while it can also afflict men. Breast cancer treatment and detection are greatly aided by the use of histopathological images since they contain sufficient phenotypic data. A Deep Neural Network (DNN) is commonly employed to improve accuracy and breast cancer detection. In our research, we have analyzed pre-trained deep transfer learning models such as ResNet50, ResNet101, VGG16, and VGG19 for detecting breast cancer using the 2453 histopathology images dataset. Images in the dataset were separated into two categories: those with invasive ductal carcinoma (IDC) and those without IDC. After analyzing the transfer learning model, we found that ResNet50 outperformed other models, achieving accuracy rates of 90.2%, Area under Curve (AUC) rates of 90.0%, recall rates of 94.7%, and a marginal loss of 3.5%.
Abstract:The most deadly and life-threatening disease in the world is lung cancer. Though early diagnosis and accurate treatment are necessary for lowering the lung cancer mortality rate. A computerized tomography (CT) scan-based image is one of the most effective imaging techniques for lung cancer detection using deep learning models. In this article, we proposed a deep learning model-based Convolutional Neural Network (CNN) framework for the early detection of lung cancer using CT scan images. We also have analyzed other models for instance Inception V3, Xception, and ResNet-50 models to compare with our proposed model. We compared our models with each other considering the metrics of accuracy, Area Under Curve (AUC), recall, and loss. After evaluating the model's performance, we observed that CNN outperformed other models and has been shown to be promising compared to traditional methods. It achieved an accuracy of 92%, AUC of 98.21%, recall of 91.72%, and loss of 0.328.