Abstract:Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.
Abstract:Air pollution stands as the fourth leading cause of death globally. While extensive research has been conducted in this domain, most approaches rely on large datasets when it comes to prediction. This limits their applicability in low-resource settings though more vulnerable. This study addresses this gap by proposing a novel machine learning approach for accurate air quality prediction using two months of air quality data. By leveraging the World Weather Repository, the meteorological, air pollutant, and Air Quality Index features from 197 capital cities were considered to predict air quality for the next day. The evaluation of several machine learning models demonstrates the effectiveness of the Random Forest algorithm in generating reliable predictions, particularly when applied to classification rather than regression, approach which enhances the model's generalizability by 42%, achieving a cross-validation score of 0.38 for regression and 0.89 for classification. To instill confidence in the predictions, interpretable machine learning was considered. Finally, a cost estimation comparing the implementation of this solution in high-resource and low-resource settings is presented including a tentative of technology licensing business model. This research highlights the potential for resource-limited countries to independently predict air quality while awaiting larger datasets to further refine their predictions.
Abstract:The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting