Abstract:AI and deep learning are two recent innovations that have made a big difference in helping to solve problems in the clinical space. Using clinical imaging and sound examination, they also work on improving their vision so that they can spot diseases early and correctly. Because there aren't enough trained HR, clinical professionals are asking for help with innovation because it helps them adapt to more patients. Aside from serious health problems like cancer and diabetes, the effects of respiratory infections are also slowly getting worse and becoming dangerous for society. Respiratory diseases need to be found early and treated quickly, so listening to the sounds of the lungs is proving to be a very helpful tool along with chest X-rays. The presented research hopes to use deep learning ideas based on Convolutional Brain Organization to help clinical specialists by giving a detailed and thorough analysis of clinical respiratory sound data for Ongoing Obstructive Pneumonic identification. We used MFCC, Mel-Spectrogram, Chroma, Chroma (Steady Q), and Chroma CENS from the Librosa AI library in the tests we ran. The new system could also figure out how serious the infection was, whether it was mild, moderate, or severe. The test results agree with the outcome of the deep learning approach that was proposed. The accuracy of the framework arrangement has been raised to a score of 96% on the ICBHI. Also, in the led tests, we used K-Crisp Cross-Approval with ten parts to make the presentation of the new deep learning approach easier to understand. With a 96 percent accuracy rate, the suggested network is better than the rest. If you don't use cross-validation, the model is 90% accurate.
Abstract:Mosquito-related diseases pose a significant threat to global public health, necessitating efficient and accurate mosquito classification for effective surveillance and control. This work presents an innovative approach to mosquito classification by leveraging state-of-the-art vision transformers and open-set learning techniques. A novel framework has been introduced that integrates Transformer-based deep learning models with comprehensive data augmentation and preprocessing methods, enabling robust and precise identification of ten mosquito species. The Swin Transformer model achieves the best performance for traditional closed-set learning with 99.80\% accuracy and 0.998 F1 score. The lightweight MobileViT technique attains an almost similar accuracy of 98.90\% with significantly reduced parameters and model complexities. Next, the applied deep learning models' adaptability and generalizability in a static environment have been enhanced by using new classes of data samples during the inference stage that have not been included in the training set. The proposed framework's ability to handle unseen classes like insects similar to mosquitoes, even humans, through open-set learning further enhances its practical applicability employing the OpenMax technique and Weibull distribution. The traditional CNN model, Xception, outperforms the latest transformer with higher accuracy and F1 score for open-set learning. The study's findings highlight the transformative potential of advanced deep-learning architectures in entomology, providing a strong groundwork for future research and development in mosquito surveillance and vector control. The implications of this work extend beyond mosquito classification, offering valuable insights for broader ecological and environmental monitoring applications.