Abstract:Large Language Models (LLMs), such as GPT, are considered to learn the latent distributions within large-scale web-crawl datasets and accomplish natural language processing (NLP) tasks by predicting the next token. However, this mechanism of latent distribution modeling lacks quantitative understanding and analysis. In this paper, we propose a novel perspective that any language dataset can be represented by a Monte Carlo Language Tree (abbreviated as ``Data-Tree''), where each node denotes a token, each edge denotes a token transition probability, and each sequence has a unique path. Any GPT-like language model can also be flattened into another Monte Carlo Language Tree (abbreviated as ``GPT-Tree''). Our experiments show that different GPT models trained on the same dataset exhibit significant structural similarity in GPT-Tree visualization, and larger models converge more closely to the Data-Tree. More than 87\% GPT output tokens can be recalled by Data-Tree. These findings may confirm that the reasoning process of LLMs is more likely to be probabilistic pattern-matching rather than formal reasoning, as each model inference seems to find a context pattern with maximum probability from the Data-Tree. Furthermore, we provide deeper insights into issues such as hallucination, Chain-of-Thought (CoT) reasoning, and token bias in LLMs.
Abstract:Large Language Models (LLMs), including GPT-3.5, LLaMA, and PaLM, seem to be knowledgeable and able to adapt to many tasks. However, we still can not completely trust their answer, since LLMs suffer from hallucination--fabricating non-existent facts to cheat users without perception. And the reasons for their existence and pervasiveness remain unclear. In this paper, we demonstrate that non-sense prompts composed of random tokens can also elicit the LLMs to respond with hallucinations. This phenomenon forces us to revisit that hallucination may be another view of adversarial examples, and it shares similar features with conventional adversarial examples as the basic feature of LLMs. Therefore, we formalize an automatic hallucination triggering method as the hallucination attack in an adversarial way. Finally, we explore basic feature of attacked adversarial prompts and propose a simple yet effective defense strategy. Our code is released on GitHub.