Abstract:Automated Machine Learning (AutoML) has significantly advanced the efficiency of ML-focused software development by automating hyperparameter optimization and pipeline construction, reducing the need for manual intervention. Quantum Machine Learning (QML) offers the potential to surpass classical machine learning (ML) capabilities by utilizing quantum computing. However, the complexity of QML presents substantial entry barriers. We introduce \emph{AutoQML}, a novel framework that adapts the AutoML approach to QML, providing a modular and unified programming interface to facilitate the development of QML pipelines. AutoQML leverages the QML library sQUlearn to support a variety of QML algorithms. The framework is capable of constructing end-to-end pipelines for supervised learning tasks, ensuring accessibility and efficacy. We evaluate AutoQML across four industrial use cases, demonstrating its ability to generate high-performing QML pipelines that are competitive with both classical ML models and manually crafted quantum solutions.
Abstract:sQUlearn introduces a user-friendly, NISQ-ready Python library for quantum machine learning (QML), designed for seamless integration with classical machine learning tools like scikit-learn. The library's dual-layer architecture serves both QML researchers and practitioners, enabling efficient prototyping, experimentation, and pipelining. sQUlearn provides a comprehensive toolset that includes both quantum kernel methods and quantum neural networks, along with features like customizable data encoding strategies, automated execution handling, and specialized kernel regularization techniques. By focusing on NISQ-compatibility and end-to-end automation, sQUlearn aims to bridge the gap between current quantum computing capabilities and practical machine learning applications.