Abstract:A major step toward Artificial General Intelligence (AGI) and Super Intelligence is AI's ability to autonomously conduct research - what we term Artificial Research Intelligence (ARI). If machines could generate hypotheses, conduct experiments, and write research papers without human intervention, it would transform science. Sakana recently introduced the 'AI Scientist', claiming to conduct research autonomously, i.e. they imply to have achieved what we term Artificial Research Intelligence (ARI). The AI Scientist gained much attention, but a thorough independent evaluation has yet to be conducted. Our evaluation of the AI Scientist reveals critical shortcomings. The system's literature reviews produced poor novelty assessments, often misclassifying established concepts (e.g., micro-batching for stochastic gradient descent) as novel. It also struggles with experiment execution: 42% of experiments failed due to coding errors, while others produced flawed or misleading results. Code modifications were minimal, averaging 8% more characters per iteration, suggesting limited adaptability. Generated manuscripts were poorly substantiated, with a median of five citations, most outdated (only five of 34 from 2020 or later). Structural errors were frequent, including missing figures, repeated sections, and placeholder text like 'Conclusions Here'. Some papers contained hallucinated numerical results. Despite these flaws, the AI Scientist represents a leap forward in research automation. It generates full research manuscripts with minimal human input, challenging expectations of AI-driven science. Many reviewers might struggle to distinguish its work from human researchers. While its quality resembles a rushed undergraduate paper, its speed and cost efficiency are unprecedented, producing a full paper for USD 6 to 15 with 3.5 hours of human involvement, far outpacing traditional researchers.
Abstract:To combat the rising energy consumption of recommender systems we implement a novel alternative for k-fold cross validation. This alternative, named e-fold cross validation, aims to minimize the number of folds to achieve a reduction in power usage while keeping the reliability and robustness of the test results high. We tested our method on 5 recommender system algorithms across 6 datasets and compared it with 10-fold cross validation. On average e-fold cross validation only needed 41.5% of the energy that 10-fold cross validation would need, while it's results only differed by 1.81%. We conclude that e-fold cross validation is a promising approach that has the potential to be an energy efficient but still reliable alternative to k-fold cross validation.