Muataz
Abstract:In this paper, we propose a blind source separation of a linear mixture of dependent sources based on copula statistics that measure the non-linear dependence between source component signals structured as copula density functions. The source signals are assumed to be stationary. The method minimizes the Kullback-Leibler divergence between the copula density functions of the estimated sources and of the dependency structure. The proposed method is applied to data obtained from the time-domain analysis of the classical 11-Bus 4-Machine system. Extensive simulation results demonstrate that the proposed method based on copula statistics converges faster and outperforms the state-of-the-art blind source separation method for dependent sources in terms of interference-to-signal ratio.
Abstract:The dynamics of a power system with large penetration of renewable energy resources are becoming more nonlinear due to the intermittence of these resources and the switching of their power electronic devices. Therefore, it is crucial to accurately identify the dynamical modes of oscillation of such a power system when it is subject to disturbances to initiate appropriate preventive or corrective control actions. In this paper, we propose a high-order blind source identification (HOBI) algorithm based on the copula statistic to address these non-linear dynamics in modal analysis. The method combined with Hilbert transform (HOBI-HT) and iteration procedure (HOBMI) can identify all the modes as well as the model order from the observation signals obtained from the number of channels as low as one. We access the performance of the proposed method on numerical simulation signals and recorded data from a simulation of time domain analysis on the classical 11-Bus 4-Machine test system. Our simulation results outperform the state-of-the-art method in accuracy and effectiveness.