Abstract:Large Language Models (LLMs) have shown remarkable capabilities in code generation tasks, yet they face significant limitations in handling complex, long-context programming challenges and demonstrating complex compositional reasoning abilities. This paper introduces a novel agentic framework for ``guided code generation'' that tries to address these limitations through a deliberately structured, fine-grained approach to code generation tasks. Our framework leverages LLMs' strengths as fuzzy searchers and approximate information retrievers while mitigating their weaknesses in long sequential reasoning and long-context understanding. Empirical evaluation using OpenAI's HumanEval benchmark with Meta's Llama 3.1 8B model (int4 precision) demonstrates a 23.79\% improvement in solution accuracy compared to direct one-shot generation. Our results indicate that structured, guided approaches to code generation can significantly enhance the practical utility of LLMs in software development while overcoming their inherent limitations in compositional reasoning and context handling.
Abstract:In this paper, we address the problem of car detection from aerial images using Convolutional Neural Networks (CNN). This problem presents additional challenges as compared to car (or any object) detection from ground images because features of vehicles from aerial images are more difficult to discern. To investigate this issue, we assess the performance of two state-of-the-art CNN algorithms, namely Faster R-CNN, which is the most popular region-based algorithm, and YOLOv3, which is known to be the fastest detection algorithm. We analyze two datasets with different characteristics to check the impact of various factors, such as UAV's altitude, camera resolution, and object size. The objective of this work is to conduct a robust comparison between these two cutting-edge algorithms. By using a variety of metrics, we show that none of the two algorithms outperforms the other in all cases.