Abstract:Computer aided detection and diagnosis systems based on deep learning have shown promising performance in breast cancer detection. However, there are cases where the obtained results lack justification. In this study, our objective is to highlight the regions of interest used by a convolutional neural network (CNN) for classifying histological images as benign or malignant. We compare these regions with the regions identified by pathologists. To achieve this, we employed the VGG19 architecture and tested three visualization methods: Gradient, LRP Z, and LRP Epsilon. Additionally, we experimented with three pixel selection methods: Bins, K-means, and MeanShift. Based on the results obtained, the Gradient visualization method and the MeanShift selection method yielded satisfactory outcomes for visualizing the images.
Abstract:In the context of arabic Information Retrieval Systems (IRS) guided by arabic ontology and to enable those systems to better respond to user requirements, this paper aims to representing documents and queries by the best concepts extracted from Arabic Wordnet. Identified concepts belonging to Arabic WordNet synsets are extracted from documents and queries, and those having a single sense are expanded. The expanded query is then used by the IRS to retrieve the relevant documents searched. Our experiments are based primarily on a medium size corpus of arabic text. The results obtained shown us that there are a global improvement in the performance of the arabic IRS.