Abstract:The Internet of Things (IoT) is a paradigm characterized by a network of embedded sensors and services. These sensors are incorporated to collect various information, track physical conditions, e.g., waste bins' status, and exchange data with different centralized platforms. The need for such sensors is increasing; however, proliferation of technologies comes with various challenges. For example, how can IoT and its associated data be used to enhance waste management? In smart cities, an efficient waste management system is crucial. Artificial Intelligence (AI) and IoT-enabled approaches can empower cities to manage the waste collection. This work proposes an intelligent approach to route recommendation in an IoT-enabled waste management system given spatial constraints. It performs a thorough analysis based on AI-based methods and compares their corresponding results. Our solution is based on a multiple-level decision-making process in which bins' status and coordinates are taken into account to address the routing problem. Such AI-based models can help engineers design a sustainable infrastructure system.
Abstract:Data volume grows explosively with the proliferation of powerful smartphones and innovative mobile applications. The ability to accurately and extensively monitor and analyze these data is necessary. Much concern in mobile data analysis is related to human beings and their behaviours. Due to the potential value that lies behind these massive data, there have been different proposed approaches for understanding corresponding patterns. To that end, monitoring people's interactions, whether counting them at fixed locations or tracking them by generating origin-destination matrices is crucial. The former can be used to determine the utilization of assets like roads and city attractions. The latter is valuable when planning transport infrastructure. Such insights allow a government to predict the adoption of new roads, new public transport routes, modification of existing infrastructure, and detection of congestion zones, resulting in more efficient designs and improvement. Smartphone data exploration can help research in various fields, e.g., urban planning, transportation, health care, and business marketing. It can also help organizations in decision making, policy implementation, monitoring and evaluation at all levels. This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data. We classify these existing methods and present a taxonomy of the related work by discussing their pros and cons.
Abstract:Smart Manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying Industrial Internet of Things (IIoT) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management. Embracing Machine Learning and Artificial Intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on Evolutionary Computing and Deep Learning algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.