Abstract:The continued growth in the deployment of Internet-of-Things (IoT) devices has been fueled by the increased connectivity demand, particularly in industrial environments. However, this has led to an increase in the number of network related attacks due to the increased number of potential attack surfaces. Industrial IoT (IIoT) devices are prone to various network related attacks that can have severe consequences on the manufacturing process as well as on the safety of the workers in the manufacturing plant. One promising solution that has emerged in recent years for attack detection is Machine learning (ML). More specifically, ensemble learning models have shown great promise in improving the performance of the underlying ML models. Accordingly, this paper proposes a framework based on the combined use of Bayesian Optimization-Gaussian Process (BO-GP) with an ensemble tree-based learning model to improve the performance of intrusion and attack detection in IIoT environments. The proposed framework's performance is evaluated using the Windows 10 dataset collected by the Cyber Range and IoT labs at University of New South Wales. Experimental results illustrate the improvement in detection accuracy, precision, and F-score when compared to standard tree and ensemble tree models.
Abstract:The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.
Abstract:The field of e-learning has emerged as a topic of interest in academia due to the increased ease of accessing the Internet using using smart-phones and wireless devices. One of the challenges facing e-learning platforms is how to keep students motivated and engaged. Moreover, it is also crucial to identify the students that might need help in order to make sure their academic performance doesn't suffer. To that end, this paper tries to investigate the relationship between student engagement and their academic performance. Apriori association rules algorithm is used to derive a set of rules that relate student engagement to academic performance. Experimental results' analysis done using confidence and lift metrics show that a positive correlation exists between students' engagement level and their academic performance in a blended e-learning environment. In particular, it is shown that higher engagement often leads to better academic performance. This cements the previous work that linked engagement and academic performance in traditional classrooms.
Abstract:Domain Name System (DNS) is a crucial component of current IP-based networks as it is the standard mechanism for name to IP resolution. However, due to its lack of data integrity and origin authentication processes, it is vulnerable to a variety of attacks. One such attack is Typosquatting. Detecting this attack is particularly important as it can be a threat to corporate secrets and can be used to steal information or commit fraud. In this paper, a machine learning-based approach is proposed to tackle the typosquatting vulnerability. To that end, exploratory data analytics is first used to better understand the trends observed in eight domain name-based extracted features. Furthermore, a majority voting-based ensemble learning classifier built using five classification algorithms is proposed that can detect suspicious domains with high accuracy. Moreover, the observed trends are validated by studying the same features in an unlabeled dataset using K-means clustering algorithm and through applying the developed ensemble learning classifier. Results show that legitimate domains have a smaller domain name length and fewer unique characters. Moreover, the developed ensemble learning classifier performs better in terms of accuracy, precision, and F-score. Furthermore, it is shown that similar trends are observed when clustering is used. However, the number of domains identified as potentially suspicious is high. Hence, the ensemble learning classifier is applied with results showing that the number of domains identified as potentially suspicious is reduced by almost a factor of five while still maintaining the same trends in terms of features' statistics.
Abstract:The increased reliance on the Internet and the corresponding surge in connectivity demand has led to a significant growth in Internet-of-Things (IoT) devices. The continued deployment of IoT devices has in turn led to an increase in network attacks due to the larger number of potential attack surfaces as illustrated by the recent reports that IoT malware attacks increased by 215.7% from 10.3 million in 2017 to 32.7 million in 2018. This illustrates the increased vulnerability and susceptibility of IoT devices and networks. Therefore, there is a need for proper effective and efficient attack detection and mitigation techniques in such environments. Machine learning (ML) has emerged as one potential solution due to the abundance of data generated and available for IoT devices and networks. Hence, they have significant potential to be adopted for intrusion detection for IoT environments. To that end, this paper proposes an optimized ML-based framework consisting of a combination of Bayesian optimization Gaussian Process (BO-GP) algorithm and decision tree (DT) classification model to detect attacks on IoT devices in an effective and efficient manner. The performance of the proposed framework is evaluated using the Bot-IoT-2018 dataset. Experimental results show that the proposed optimized framework has a high detection accuracy, precision, recall, and F-score, highlighting its effectiveness and robustness for the detection of botnet attacks in IoT environments.
Abstract:The Domain Name System (DNS) protocol plays a major role in today's Internet as it translates between website names and corresponding IP addresses. However, due to the lack of processes for data integrity and origin authentication, the DNS protocol has several security vulnerabilities. This often leads to a variety of cyber-attacks, including botnet network attacks. One promising solution to detect DNS-based botnet attacks is adopting machine learning (ML) based solutions. To that end, this paper proposes a novel optimized ML-based framework to detect botnets based on their corresponding DNS queries. More specifically, the framework consists of using information gain as a feature selection method and genetic algorithm (GA) as a hyper-parameter optimization model to tune the parameters of a random forest (RF) classifier. The proposed framework is evaluated using a state-of-the-art TI-2016 DNS dataset. Experimental results show that the proposed optimized framework reduced the feature set size by up to 60%. Moreover, it achieved a high detection accuracy, precision, recall, and F-score compared to the default classifier. This highlights the effectiveness and robustness of the proposed framework in detecting botnet attacks.
Abstract:Cyber-security garnered significant attention due to the increased dependency of individuals and organizations on the Internet and their concern about the security and privacy of their online activities. Several previous machine learning (ML)-based network intrusion detection systems (NIDSs) have been developed to protect against malicious online behavior. This paper proposes a novel multi-stage optimized ML-based NIDS framework that reduces computational complexity while maintaining its detection performance. This work studies the impact of oversampling techniques on the models' training sample size and determines the minimal suitable training sample size. Furthermore, it compares between two feature selection techniques, information gain and correlation-based, and explores their effect on detection performance and time complexity. Moreover, different ML hyper-parameter optimization techniques are investigated to enhance the NIDS's performance. The performance of the proposed framework is evaluated using two recent intrusion detection datasets, the CICIDS 2017 and the UNSW-NB 2015 datasets. Experimental results show that the proposed model significantly reduces the required training sample size (up to 74%) and feature set size (up to 50%). Moreover, the model performance is enhanced with hyper-parameter optimization with detection accuracies over 99% for both datasets, outperforming recent literature works by 1-2% higher accuracy and 1-2% lower false alarm rate.
Abstract:Network attacks have been very prevalent as their rate is growing tremendously. Both organization and individuals are now concerned about their confidentiality, integrity and availability of their critical information which are often impacted by network attacks. To that end, several previous machine learning-based intrusion detection methods have been developed to secure network infrastructure from such attacks. In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique to tune the parameters of Support Vector Machine with Gaussian Kernel (SVM-RBF), Random Forest (RF), and k-Nearest Neighbor (k-NN) algorithms. The performance of the considered algorithms is evaluated using the ISCX 2012 dataset. Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
Abstract:Predicting students' academic performance has been a research area of interest in recent years with many institutions focusing on improving the students' performance and the education quality. The analysis and prediction of students' performance can be achieved using various data mining techniques. Moreover, such techniques allow instructors to determine possible factors that may affect the students' final marks. To that end, this work analyzes two different undergraduate datasets at two different universities. Furthermore, this work aims to predict the students' performance at two stages of course delivery (20% and 50% respectively). This analysis allows for properly choosing the appropriate machine learning algorithms to use as well as optimize the algorithms' parameters. Furthermore, this work adopts a systematic multi-split approach based on Gini index and p-value. This is done by optimizing a suitable bagging ensemble learner that is built from any combination of six potential base machine learning algorithms. It is shown through experimental results that the posited bagging ensemble models achieve high accuracy for the target group for both datasets.
Abstract:Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation. The exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applications, resources and platforms. In turn, the rapid rate and volume of data creation has begun to pose significant challenges for data management and security. The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance. In this paper, we conduct a systematic literature review (SLR) of data mining techniques (DMT) used in IDS-based solutions through the period 2013-2018. We employed criterion-based, purposive sampling identifying 32 articles, which constitute the primary source of the present survey. After a careful investigation of these articles, we identified 17 separate DMTs deployed in an IDS context. This paper also presents the merits and disadvantages of the various works of current research that implemented DMTs and distributed streaming frameworks (DSF) to detect and/or prevent malicious attacks in a big data environment.