Abstract:Previous work on emotion recognition demonstrated a synergistic effect of combining several modalities such as auditory, visual, and transcribed text to estimate the affective state of a speaker. Among these, the linguistic modality is crucial for the evaluation of an expressed emotion. However, manually transcribed spoken text cannot be given as input to a system practically. We argue that using ground-truth transcriptions during training and evaluation phases leads to a significant discrepancy in performance compared to real-world conditions, as the spoken text has to be recognized on the fly and can contain speech recognition mistakes. In this paper, we propose a method of integrating an automatic speech recognition (ASR) output with a character-level recurrent neural network for sentiment recognition. In addition, we conduct several experiments investigating sentiment recognition for human-robot interaction in a noise-realistic scenario which is challenging for the ASR systems. We quantify the improvement compared to using only the acoustic modality in sentiment recognition. We demonstrate the effectiveness of this approach on the Multimodal Corpus of Sentiment Intensity (MOSI) by achieving 73,6% accuracy in a binary sentiment classification task, exceeding previously reported results that use only acoustic input. In addition, we set a new state-of-the-art performance on the MOSI dataset (80.4% accuracy, 2% absolute improvement).
Abstract:Speech emotion recognition (SER) is an important aspect of effective human-robot collaboration and received a lot of attention from the research community. For example, many neural network-based architectures were proposed recently and pushed the performance to a new level. However, the applicability of such neural SER models trained only on in-domain data to noisy conditions is currently under-researched. In this work, we evaluate the robustness of state-of-the-art neural acoustic emotion recognition models in human-robot interaction scenarios. We hypothesize that a robot's ego noise, room conditions, and various acoustic events that can occur in a home environment can significantly affect the performance of a model. We conduct several experiments on the iCub robot platform and propose several novel ways to reduce the gap between the model's performance during training and testing in real-world conditions. Furthermore, we observe large improvements in the model performance on the robot and demonstrate the necessity of introducing several data augmentation techniques like overlaying background noise and loudness variations to improve the robustness of the neural approaches.
Abstract:Acoustically expressed emotions can make communication with a robot more efficient. Detecting emotions like anger could provide a clue for the robot indicating unsafe/undesired situations. Recently, several deep neural network-based models have been proposed which establish new state-of-the-art results in affective state evaluation. These models typically start processing at the end of each utterance, which not only requires a mechanism to detect the end of an utterance but also makes it difficult to use them in a real-time communication scenario, e.g. human-robot interaction. We propose the EmoRL model that triggers an emotion classification as soon as it gains enough confidence while listening to a person speaking. As a result, we minimize the need for segmenting the audio signal for classification and achieve lower latency as the audio signal is processed incrementally. The method is competitive with the accuracy of a strong baseline model, while allowing much earlier prediction.