Abstract:Programming physical intelligence into mechanisms holds great promise for machines that can accomplish tasks such as navigation of unstructured environments while utilizing a minimal amount of computational resources and electronic components. In this study, we introduce a novel design approach for physically intelligent under-actuated mechanisms capable of autonomously adjusting their motion in response to environmental interactions. Specifically, multistability is harnessed to sequence the motion of different degrees of freedom in a programmed order. A key aspect of this approach is that these sequences can be passively reprogrammed through mechanical stimuli that arise from interactions with the environment. To showcase our approach, we construct a four degree of freedom robot capable of autonomously navigating mazes and moving away from obstacles. Remarkably, this robot operates without relying on traditional computational architectures and utilizes only a single linear actuator.