Abstract:Automatic speech recognition models require large amounts of speech recordings for training. However, the collection of such data often is cumbersome and leads to privacy concerns. Federated learning has been widely used as an effective decentralized technique that collaboratively learns a shared prediction model while keeping the data local on different clients. Unfortunately, client devices often feature limited computation and communication resources leading to practical difficulties for large models. In addition, the heterogeneity that characterizes edge devices makes it sub-optimal to generate a single model that fits all of them. Differently from the recent literature, where multiple models with different architectures are used, in this work, we propose using dynamical architectures which, employing early-exit solutions, can adapt their processing (i.e. traversed layers) depending on the input and on the operation conditions. This solution falls in the realm of partial training methods and brings two benefits: a single model is used on a variety of devices; federating the models after local training is straightforward. Experiments on public datasets show that our proposed approach is effective and can be combined with basic federated learning strategies.
Abstract:Intent classification is a fundamental task in the spoken language understanding field that has recently gained the attention of the scientific community, mainly because of the feasibility of approaching it with end-to-end neural models. In this way, avoiding using intermediate steps, i.e. automatic speech recognition, is possible, thus the propagation of errors due to background noise, spontaneous speech, speaking styles of users, etc. Towards the development of solutions applicable in real scenarios, it is interesting to investigate how environmental noise and related noise reduction techniques to address the intent classification task with end-to-end neural models. In this paper, we experiment with a noisy version of the fluent speech command data set, combining the intent classifier with a time-domain speech enhancement solution based on Wave-U-Net and considering different training strategies. Experimental results reveal that, for this task, the use of speech enhancement greatly improves the classification accuracy in noisy conditions, in particular when the classification model is trained on enhanced signals.
Abstract:Recently, several very effective neural approaches for single-channel speech separation have been presented in the literature. However, due to the size and complexity of these models, their use on low-resource devices, e.g. for hearing aids, and earphones, is still a challenge and established solutions are not available yet. Although approaches based on either pruning or compressing neural models have been proposed, the design of a model architecture suitable for a certain application domain often requires heuristic procedures not easily portable to different low-resource platforms. Given the modular nature of the well-known Conv-Tasnet speech separation architecture, in this paper we consider three parameters that directly control the overall size of the model, namely: the number of residual blocks, the number of repetitions of the separation blocks and the number of channels in the depth-wise convolutions, and experimentally evaluate how they affect the speech separation performance. In particular, experiments carried out on the Libri2Mix show that the number of dilated 1D-Conv blocks is the most critical parameter and that the usage of extra-dilation in the residual blocks allows reducing the performance drop.