Abstract:During the process of classifying Hyperspectral Image (HSI), every pixel sample is categorized under a land-cover type. CNN-based techniques for HSI classification have notably advanced the field by their adept feature representation capabilities. However, acquiring deep features remains a challenge for these CNN-based methods. In contrast, transformer models are adept at extracting high-level semantic features, offering a complementary strength. This paper's main contribution is the introduction of an HSI classification model that includes two convolutional blocks, a Gate-Shift-Fuse (GSF) block and a transformer block. This model leverages the strengths of CNNs in local feature extraction and transformers in long-range context modelling. The GSF block is designed to strengthen the extraction of local and global spatial-spectral features. An effective attention mechanism module is also proposed to enhance the extraction of information from HSI cubes. The proposed method is evaluated on four well-known datasets (the Indian Pines, Pavia University, WHU-WHU-Hi-LongKou and WHU-Hi-HanChuan), demonstrating that the proposed framework achieves superior results compared to other models.
Abstract:In the recent years, hyperspectral imaging (HSI) has gained considerably popularity among computer vision researchers for its potential in solving remote sensing problems, especially in agriculture field. However, HSI classification is a complex task due to the high redundancy of spectral bands, limited training samples, and non-linear relationship between spatial position and spectral bands. Fortunately, deep learning techniques have shown promising results in HSI analysis. This literature review explores recent applications of deep learning approaches such as Autoencoders, Convolutional Neural Networks (1D, 2D, and 3D), Recurrent Neural Networks, Deep Belief Networks, and Generative Adversarial Networks in agriculture. The performance of these approaches has been evaluated and discussed on well-known land cover datasets including Indian Pines, Salinas Valley, and Pavia University.