Abstract:With the booming growth of advanced digital technologies, it has become possible for users as well as distributors of energy to obtain detailed and timely information about the electricity consumption of households. These technologies can also be used to forecast the household's electricity consumption (a.k.a. the load). In this paper, we investigate the use of Variational Mode Decomposition and deep learning techniques to improve the accuracy of the load forecasting problem. Although this problem has been studied in the literature, selecting an appropriate decomposition level and a deep learning technique providing better forecasting performance have garnered comparatively less attention. This study bridges this gap by studying the effect of six decomposition levels and five distinct deep learning networks. The raw load profiles are first decomposed into intrinsic mode functions using the Variational Mode Decomposition in order to mitigate their non-stationary aspect. Then, day, hour, and past electricity consumption data are fed as a three-dimensional input sequence to a four-level Wavelet Decomposition Network model. Finally, the forecast sequences related to the different intrinsic mode functions are combined to form the aggregate forecast sequence. The proposed method was assessed using load profiles of five Moroccan households from the Moroccan buildings' electricity consumption dataset (MORED) and was benchmarked against state-of-the-art time-series models and a baseline persistence model.
Abstract:We present a novel approach to perform ground-based estimation and prediction of the surface solar irradiance with the view to predicting photovoltaic energy production. We propose the use of mini-batch k-means clustering to extract features, referred to as per cluster number of pixels (PCNP), from sky images taken by a low-cost fish eye camera. These features are first used to classify the sky as clear or cloudy using a single hidden layer neural network; the classification accuracy achieves 99.7%. If the sky is classified as cloudy, we propose to use a deep neural network having as input features the PCNP to predict intra-hour variability of the solar irradiance. Toward this objective, in this paper, we focus on estimating the deep neural network model relating the PCNP features and the solar irradiance, which is an important step before performing the prediction task. The proposed deep learning-based estimation approach is shown to have an accuracy of 95%.