Abstract:We present a novel approach to perform ground-based estimation and prediction of the surface solar irradiance with the view to predicting photovoltaic energy production. We propose the use of mini-batch k-means clustering to extract features, referred to as per cluster number of pixels (PCNP), from sky images taken by a low-cost fish eye camera. These features are first used to classify the sky as clear or cloudy using a single hidden layer neural network; the classification accuracy achieves 99.7%. If the sky is classified as cloudy, we propose to use a deep neural network having as input features the PCNP to predict intra-hour variability of the solar irradiance. Toward this objective, in this paper, we focus on estimating the deep neural network model relating the PCNP features and the solar irradiance, which is an important step before performing the prediction task. The proposed deep learning-based estimation approach is shown to have an accuracy of 95%.
Abstract:Understanding the properties exhibited by large scale network probing traffic would improve cyber threat intelligence. In addition, the prediction of probing rates is a key feature for security practitioners in their endeavors for making better operational decisions and for enhancing their defense strategy skills. In this work, we study different aspects of the traffic captured by a /20 network telescope. First, we perform an exploratory data analysis of the collected probing activities. The investigation includes probing rates at the port level, services interesting top network probers and the distribution of probing rates by geolocation. Second, we extract the network probers exploration patterns. We model these behaviors using transition graphs decorated with probabilities of switching from a port to another. Finally, we assess the capacity of Non-stationary Autoregressive and Vector Autoregressive models in predicting port probing rates as a first step towards using more robust models for better forecasting performance.