Abstract:Traditional recommendation proposals, including content-based and collaborative filtering, usually focus on similarity between items or users. Existing approaches lack ways of introducing unexpectedness into recommendations, prioritizing globally popular items over exposing users to unforeseen items. This investigation aims to design and evaluate a novel layer on top of recommender systems suited to incorporate relational information and suggest items with a user-defined degree of surprise. We propose a Knowledge Graph (KG) based recommender system by encoding user interactions on item catalogs. Our study explores whether network-level metrics on KGs can influence the degree of surprise in recommendations. We hypothesize that surprisingness correlates with certain network metrics, treating user profiles as subgraphs within a larger catalog KG. The achieved solution reranks recommendations based on their impact on structural graph metrics. Our research contributes to optimizing recommendations to reflect the metrics. We experimentally evaluate our approach on two datasets of LastFM listening histories and synthetic Netflix viewing profiles. We find that reranking items based on complex network metrics leads to a more unexpected and surprising composition of recommendation lists.
Abstract:The analysis of network structure is essential to many scientific areas, ranging from biology to sociology. As the computational task of clustering these networks into partitions, i.e., solving the community detection problem, is generally NP-hard, heuristic solutions are indispensable. The exploration of expedient heuristics has led to the development of particularly promising approaches in the emerging technology of quantum computing. Motivated by the substantial hardware demands for all established quantum community detection approaches, we introduce a novel QUBO based approach that only needs number-of-nodes many qubits and is represented by a QUBO-matrix as sparse as the input graph's adjacency matrix. The substantial improvement on the sparsity of the QUBO-matrix, which is typically very dense in related work, is achieved through the novel concept of separation-nodes. Instead of assigning every node to a community directly, this approach relies on the identification of a separation-node set, which -- upon its removal from the graph -- yields a set of connected components, representing the core components of the communities. Employing a greedy heuristic to assign the nodes from the separation-node sets to the identified community cores, subsequent experimental results yield a proof of concept. This work hence displays a promising approach to NISQ ready quantum community detection, catalyzing the application of quantum computers for the network structure analysis of large scale, real world problem instances.