Abstract:Multi-vector embedding models have emerged as a powerful paradigm for document retrieval, preserving fine-grained visual and textual details through token-level representations. However, this expressiveness comes at a staggering cost: storing embeddings for every token inflates index sizes by over $1000\times$ compared to single-vector approaches, severely limiting scalability. We introduce \textbf{ReinPool}, a reinforcement learning framework that learns to dynamically filter and pool multi-vector embeddings into compact, retrieval-optimized representations. By training with an inverse retrieval objective and NDCG-based rewards, ReinPool identifies and retains only the most discriminative vectors without requiring manual importance annotations. On the Vidore V2 benchmark across three vision-language embedding models, ReinPool compresses multi-vector representations by $746$--$1249\times$ into single vectors while recovering 76--81\% of full multi-vector retrieval performance. Compared to static mean pooling baselines, ReinPool achieves 22--33\% absolute NDCG@3 improvement, demonstrating that learned selection significantly outperforms heuristic aggregation.
Abstract:We study finite memory belief approximation for partially observable (PO) stochastic optimal control (SOC) problems. While belief states are sufficient for SOC in partially observable Markov decision processes (POMDPs), they are generally infinite-dimensional and impractical. We interpret truncated input-output (IO) histories as inducing a belief approximation and develop a metric-based theory that directly relates information loss to control performance. Using the Wasserstein metric, we derive policy-conditional performance bounds that quantify value degradation induced by finite memory along typical closed-loop trajectories. Our analysis proceeds via a fixed-policy comparison: we evaluate two cost functionals under the same closed-loop execution and isolate the effect of replacing the true belief by its finite memory approximation inside the belief-level cost. For linear quadratic Gaussian (LQG) systems, we provide closed-form belief mismatch evaluation and empirically validate the predicted mechanism, demonstrating that belief mismatch decays approximately exponentially with memory length and that the induced performance mismatch scales accordingly. Together, these results provide a metric-aware characterization of what finite memory belief approximation can and cannot achieve in PO settings.
Abstract:The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative, despite their inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been previously explored as a method for domain adaptation, its utility in commercial applications remains under-examined. In this study, we validate the effectiveness of applying a DACP-based recipe across diverse foundation models and service domains. Through extensive experiments and real-world evaluations, we demonstrate that DACP-applied sLLMs achieve substantial gains in target domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
Abstract:Bird-sized flapping-wing robots offer significant potential for agile flight in complex environments, but achieving agile and robust trajectory tracking remains a challenge due to the complex aerodynamics and highly nonlinear dynamics inherent in flapping-wing flight. In this work, a learning-based control approach is introduced to unlock the versatility and adaptiveness of flapping-wing flight. We propose a model-free reinforcement learning (RL)-based framework for a high degree-of-freedom (DoF) bird-inspired flapping-wing robot that allows for multimodal flight and agile trajectory tracking. Stability analysis was performed on the closed-loop system comprising of the flapping-wing system and the RL policy. Additionally, simulation results demonstrate that the RL-based controller can successfully learn complex wing trajectory patterns, achieve stable flight, switch between flight modes spontaneously, and track different trajectories under various aerodynamic conditions.