Abstract:Recent years have witnessed an increasing global population affected by neurodegenerative diseases (NDs), which traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring. As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs. The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification, opening a new avenue to facilitate faster and more cost-effective diagnosis of NDs. In this paper, we provide a comprehensive survey on recent progress of machine learning and deep learning based AI techniques applied to diagnosis of five typical NDs through gait. We provide an overview of the process of AI-assisted NDs diagnosis, and present a systematic taxonomy of existing gait data and AI models. Through an extensive review and analysis of 164 studies, we identify and discuss the challenges, potential solutions, and future directions in this field. Finally, we envision the prospective utilization of 3D skeleton data for human gait representation and the development of more efficient AI models for NDs diagnosis. We provide a public resource repository to track and facilitate developments in this emerging field: https://github.com/Kali-Hac/AI4NDD-Survey.