Abstract:As global warming increases the complexity of weather patterns; the precision of weather forecasting becomes increasingly important. Our study proposes a novel preprocessing method and convolutional autoencoder model developed to improve the interpretation of synoptic weather maps. These are critical for meteorologists seeking a thorough understanding of weather conditions. This model could recognize historical synoptic weather maps that nearly match current atmospheric conditions, marking a significant step forward in modern technology in meteorological forecasting. This comprises unsupervised learning models like VQ-VQE, as well as supervised learning models like VGG16, VGG19, Xception, InceptionV3, and ResNet50 trained on the ImageNet dataset, as well as research into newer models like EfficientNet and ConvNeXt. Our findings proved that, while these models perform well in various settings, their ability to identify comparable synoptic weather maps has certain limits. Our research, motivated by the primary goal of significantly increasing meteorologists' efficiency in labor-intensive tasks, discovered that cosine similarity is the most effective metric, as determined by a combination of quantitative and qualitative assessments to accurately identify relevant historical weather patterns. This study broadens our understanding by shifting the emphasis from numerical precision to practical application, ensuring that our model is effective in theory practical, and accessible in the complex and dynamic field of meteorology.
Abstract:Water segmentation is critical to disaster response and water resource management. Authorities may employ high-resolution photography to monitor rivers, lakes, and reservoirs, allowing for more proactive management in agriculture, industry, and conservation. Deep learning has improved flood monitoring by allowing models like CNNs, U-Nets, and transformers to handle large volumes of satellite and aerial data. However, these models usually have significant processing requirements, limiting their usage in real-time applications. This research proposes upgrading the SegFormer model for water segmentation by data augmentation with datasets such as ADE20K and RIWA to boost generalization. We examine how inductive bias affects attention-based models and discover that SegFormer performs better on bigger datasets. To further demonstrate the function of data augmentation, Low-Rank Adaptation (LoRA) is used to lower processing complexity while preserving accuracy. We show that the suggested Habaek model outperforms current models in segmentation, with an Intersection over Union (IoU) ranging from 0.91986 to 0.94397. In terms of F1-score, recall, accuracy, and precision, Habaek performs better than rival models, indicating its potential for real-world applications. This study highlights the need to enhance structures and include datasets for effective water segmentation.
Abstract:In the realm of deep learning, the Kolmogorov-Arnold Network (KAN) has emerged as a potential alternative to multilayer projections (MLPs). However, its applicability to vision tasks has not been extensively validated. In our study, we demonstrated the effectiveness of KAN for vision tasks through multiple trials on the MNIST, CIFAR10, and CIFAR100 datasets, using a training batch size of 32. Our results showed that while KAN outperformed the original MLP-Mixer on CIFAR10 and CIFAR100, it performed slightly worse than the state-of-the-art ResNet-18. These findings suggest that KAN holds significant promise for vision tasks, and further modifications could enhance its performance in future evaluations.Our contributions are threefold: first, we showcase the efficiency of KAN-based algorithms for visual tasks; second, we provide extensive empirical assessments across various vision benchmarks, comparing KAN's performance with MLP-Mixer, CNNs, and Vision Transformers (ViT); and third, we pioneer the use of natural KAN layers in visual tasks, addressing a gap in previous research. This paper lays the foundation for future studies on KANs, highlighting their potential as a reliable alternative for image classification tasks.
Abstract:In this research, we propose the first approach for integrating the Kolmogorov-Arnold Network (KAN) with various pre-trained Convolutional Neural Network (CNN) models for remote sensing (RS) scene classification tasks using the EuroSAT dataset. Our novel methodology, named KCN, aims to replace traditional Multi-Layer Perceptrons (MLPs) with KAN to enhance classification performance. We employed multiple CNN-based models, including VGG16, MobileNetV2, EfficientNet, ConvNeXt, ResNet101, and Vision Transformer (ViT), and evaluated their performance when paired with KAN. Our experiments demonstrated that KAN achieved high accuracy with fewer training epochs and parameters. Specifically, ConvNeXt paired with KAN showed the best performance, achieving 94% accuracy in the first epoch, which increased to 96% and remained consistent across subsequent epochs. The results indicated that KAN and MLP both achieved similar accuracy, with KAN performing slightly better in later epochs. By utilizing the EuroSAT dataset, we provided a robust testbed to investigate whether KAN is suitable for remote sensing classification tasks. Given that KAN is a novel algorithm, there is substantial capacity for further development and optimization, suggesting that KCN offers a promising alternative for efficient image analysis in the RS field.
Abstract:Deep learning-based, data-driven models are gaining prevalence in climate research, particularly for global weather prediction. However, training the global weather data at high resolution requires massive computational resources. Therefore, we present a new model named KARINA to overcome the substantial computational demands typical of this field. This model achieves forecasting accuracy comparable to higher-resolution counterparts with significantly less computational resources, requiring only 4 NVIDIA A100 GPUs and less than 12 hours of training. KARINA combines ConvNext, SENet, and Geocyclic Padding to enhance weather forecasting at a 2.5{\deg} resolution, which could filter out high-frequency noise. Geocyclic Padding preserves pixels at the lateral boundary of the input image, thereby maintaining atmospheric flow continuity in the spherical Earth. SENet dynamically improves feature response, advancing atmospheric process modeling, particularly in the vertical column process as numerous channels. In this vein, KARINA sets new benchmarks in weather forecasting accuracy, surpassing existing models like the ECMWF S2S reforecasts at a lead time of up to 7 days. Remarkably, KARINA achieved competitive performance even when compared to the recently developed models (Pangu-Weather, GraphCast, ClimaX, and FourCastNet) trained with high-resolution data having 100 times larger pixels. Conclusively, KARINA significantly advances global weather forecasting by efficiently modeling Earth's atmosphere with improved accuracy and resource efficiency.
Abstract:Modern deep learning techniques, which mimic traditional numerical weather prediction (NWP) models and are derived from global atmospheric reanalysis data, have caused a significant revolution within a few years. In this new paradigm, our research introduces a novel strategy that deviates from the common dependence on high-resolution data, which is often constrained by computational resources, and instead utilizes low-resolution data (2.5 degrees) for global weather prediction and climate data analysis. Our main focus is evaluating data-driven weather prediction (DDWP) frameworks, specifically addressing sample size adequacy, structural improvements to the model, and the ability of climate data to represent current climatic trends. By using the Adaptive Fourier Neural Operator (AFNO) model via FourCastNet and a proposed time-sliding method to inflate the dataset of the ECMWF Reanalysis v5 (ERA5), this paper improves on conventional approaches by adding more variables and a novel approach to data augmentation and processing. Our findings reveal that despite the lower resolution, the proposed approach demonstrates considerable accuracy in predicting atmospheric conditions, effectively rivaling higher-resolution models. Furthermore, the study confirms the model's proficiency in reflecting current climate trends and its potential in predicting future climatic events, underscoring its utility in climate change strategies. This research marks a pivotal step in the realm of meteorological forecasting, showcasing the feasibility of lower-resolution data in producing reliable predictions and opening avenues for more accessible and inclusive climate modeling. The insights gleaned from this study not only contribute to the advancement of climate science but also lay the groundwork for future innovations in the field.
Abstract:The Korean wave, which denotes the global popularity of South Korea's cultural economy, contributes to the increasing demand for the Korean language. However, as there does not exist any application for foreigners to learn Korean, this paper suggested a design of a novel Korean learning application. Speech recognition, speech-to-text, and speech-to-waveform are the three key systems in the proposed system. The Google API and the librosa library will transform the user's voice into a sentence and MFCC. The software will then display the user's phrase and answer, with mispronounced elements highlighted in red, allowing users to more easily recognize the incorrect parts of their pronunciation. Furthermore, the Siamese network might utilize those translated spectrograms to provide a similarity score, which could subsequently be used to offer feedback to the user. Despite the fact that we were unable to collect sufficient foreigner data for this research, it is notable that we presented a novel Korean pronunciation correction method for foreigners.