Abstract:Multi-task learning has been widely applied in computational vision, natural language processing and other fields, which has achieved well performance. In recent years, a lot of work about multi-task learning recommender system has been yielded, but there is no previous literature to summarize these works. To bridge this gap, we provide a systematic literature survey about multi-task recommender systems, aiming to help researchers and practitioners quickly understand the current progress in this direction. In this survey, we first introduce the background and the motivation of the multi-task learning-based recommender systems. Then we provide a taxonomy of multi-task learning-based recommendation methods according to the different stages of multi-task learning techniques, which including task relationship discovery, model architecture and optimization strategy. Finally, we raise discussions on the application and promising future directions in this area.