Abstract:Graph Neural Networks (GNNs) excel in various domains, from detecting e-commerce spam to social network classification problems. However, the lack of public graph datasets hampers research progress, particularly in heterogeneous information networks (HIN). The demand for datasets for fair HIN comparisons is growing due to advancements in GNN interpretation models. In response, we propose SynHIN, a unique method for generating synthetic heterogeneous information networks. SynHIN identifies motifs in real-world datasets, summarizes graph statistics, and constructs a synthetic network. Our approach utilizes In-Cluster and Out-Cluster Merge modules to build the synthetic HIN from primary motif clusters. After In/Our-Cluster mergers and a post-pruning process fitting the real dataset constraints, we ensure the synthetic graph statistics align closely with the reference one. SynHIN generates a synthetic heterogeneous graph dataset for node classification tasks, using the primary motif as the explanation ground truth. It can adapt and address the lack of heterogeneous graph datasets and motif ground truths, proving beneficial for assessing heterogeneous graph neural network explainers. We further present a benchmark dataset for future heterogeneous graph explainer model research. Our work marks a significant step towards explainable AI in HGNNs.
Abstract:Our research addresses class imbalance issues in heterogeneous graphs using graph neural networks (GNNs). We propose a novel method combining the strengths of Generative Adversarial Networks (GANs) with GNNs, creating synthetic nodes and edges that effectively balance the dataset. This approach directly targets and rectifies imbalances at the data level. The proposed framework resolves issues such as neglecting graph structures during data generation and creating synthetic structures usable with GNN-based classifiers in downstream tasks. It processes node and edge information concurrently, improving edge balance through node augmentation and subgraph sampling. Additionally, our framework integrates a threshold strategy, aiding in determining optimal edge thresholds during training without time-consuming parameter adjustments. Experiments on the Amazon and Yelp Review datasets highlight the effectiveness of the framework we proposed, especially in minority node identification, where it consistently outperforms baseline models across key performance metrics, demonstrating its potential in the field.