Abstract:The effectiveness of clopidogrel, a widely used antiplatelet medication, varies significantly among individuals, necessitating the development of precise predictive models to optimize patient care. In this study, we leverage federated learning strategies to address clopidogrel treatment failure detection. Our research harnesses the collaborative power of multiple healthcare institutions, allowing them to jointly train machine learning models while safeguarding sensitive patient data. Utilizing the UK Biobank dataset, which encompasses a vast and diverse population, we partitioned the data based on geographic centers and evaluated the performance of federated learning. Our results show that while centralized training achieves higher Area Under the Curve (AUC) values and faster convergence, federated learning approaches can substantially narrow this performance gap. Our findings underscore the potential of federated learning in addressing clopidogrel treatment failure detection, offering a promising avenue for enhancing patient care through personalized treatment strategies while respecting data privacy. This study contributes to the growing body of research on federated learning in healthcare and lays the groundwork for secure and privacy-preserving predictive models for various medical conditions.
Abstract:Persona and Knowledge dual context open-domain chat is a novel dialogue generation task introduced recently. While Persona and Knowledge is each interesting context of open-domain dialogue, the combination of both has not been well studied. We tackle Persona-Knowledge identification and response generation tasks in this paper. We design an informed data augmentation strategy that is compatible with neural Q&A retrieval models. With the augmented data, we perform permutative Persona-Knowledge evaluation and successive Persona search fine-tuning. Furthermore, we perform dialogue generation with various decoding techniques and illustrate crucial elements. We achieve SOTA across official metrics with 93.99% Grounding accuracy average and 23.62 SacreBLEU score.