The effectiveness of clopidogrel, a widely used antiplatelet medication, varies significantly among individuals, necessitating the development of precise predictive models to optimize patient care. In this study, we leverage federated learning strategies to address clopidogrel treatment failure detection. Our research harnesses the collaborative power of multiple healthcare institutions, allowing them to jointly train machine learning models while safeguarding sensitive patient data. Utilizing the UK Biobank dataset, which encompasses a vast and diverse population, we partitioned the data based on geographic centers and evaluated the performance of federated learning. Our results show that while centralized training achieves higher Area Under the Curve (AUC) values and faster convergence, federated learning approaches can substantially narrow this performance gap. Our findings underscore the potential of federated learning in addressing clopidogrel treatment failure detection, offering a promising avenue for enhancing patient care through personalized treatment strategies while respecting data privacy. This study contributes to the growing body of research on federated learning in healthcare and lays the groundwork for secure and privacy-preserving predictive models for various medical conditions.