Abstract:In this paper, the interference mitigation for Frequency Modulated Continuous Wave (FMCW) radar system with a dechirping receiver is investigated. After dechirping operation, the scattered signals from targets result in beat signals, i.e., the sum of complex exponentials while the interferences lead to chirp-like short pulses. Taking advantage of these different time and frequency features between the useful signals and the interferences, the interference mitigation is formulated as an optimization problem: a sparse and low-rank decomposition of a Hankel matrix constructed by lifting the measurements. Then, an iterative optimization algorithm is proposed to tackle it by exploiting the Alternating Direction of Multipliers (ADMM) scheme. Compared to the existing methods, the proposed approach does not need to detect the interference and also improves the estimation accuracy of the separated useful signals. Both numerical simulations with point-like targets and experiment results with distributed targets (i.e., raindrops) are presented to demonstrate and verify its performance. The results show that the proposed approach is generally applicable for interference mitigation in both stationary and moving target scenarios.
Abstract:A novel matrix pencil-based interference mitigation approach for FMCW radars is proposed in this paper. The interference-contaminated segment of the beat signal is firstly cut out and then the signal samples in the cut-out region are reconstructed by modeling the beat signal as a sum of complex exponentials and using the matrix pencil method to estimate their parameters. The efficiency of the proposed approach for the interference with different parameters (i.e. interference duration, signal-to-noise ratio (SNR), and different target scenarios) is investigated by means of numerical simulations. The proposed interference mitigation approach is intensively verified on experimental data. Comparisons of the proposed approach with the zeroing and other beat-frequency interpolation techniques are presented. The results indicate the broad applicability and superiority of the proposed approach, especially in low SNR and long interference duration situations.